Title |
Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization |
Authors |
최정내(Choi, Jeoung-Nae) ; 김현기(Kim, Hyun-Ki) ; 오성권(Oh, Sung-Kwun) |
Keywords |
Radial Basis Function Neural Networks ; Fuzzy C-Means clustering ; Particle Swarm Optimization ; Weighted Least Square Estimator |
Abstract |
The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set. |