Title |
Analysis of Space Charge Propagation in a Dielectric liquid Employing Field-Thermal Electron Emission Model and Finite Element Method |
Authors |
이호영(Lee, Ho-Young) ; 이세희(Lee, Se-Hee) |
Keywords |
Finite Element Method ; Fowler-Nordheim Field Emission ; Richardson-Dushman Thermionic Emission ; Space Charge Propagation |
Abstract |
In an insulating dielectric liquid such as transformer oil, space charge injection and propagation were analyzed under the Fowler-Nordheim and Richardson-Dushman's thermal emission charge injection conditions for blade-plane electrodes stressed by a step voltage. The governing equations were composed of all five equations such as the Poisson's equation for electric fields, three continuity equations for electrons, negative, and positive ions, and energy balanced equation for temperature distributions. The governing equations for each carrier, the continuity equations, belong to the hyperbolic-type PDE of which the solution has a step change at the space charge front resulting in numerical instabilities. To decrease these instabilities, the governing equations were solved simultaneously by the Finite Element Method (FEM) employing the artificial diffusion scheme as a stabilization technique. Additionally, the terminal current was calculated by using the generalized energy method which is based on the Poynting's theorem, and represents more reliable and stable approach for evaluating discharge current. To verify the proposed method, the discharge phenomena were successfully applied to the blade~plane electrodes, where the radius of blade cap was 50μm. |