Title |
The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms |
Authors |
김욱동(Kim, Wook-Dong) ; 장한종(Jang, Han-Jong) ; 오성권(Oh, Sung-Kwun) |
Keywords |
Fuzzy cascade controller ; PD cascade controller ; Particle Swarm Optimization ; Ball & Beam System |
Abstract |
In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms. |