Title |
GAN based Single Image Super-Resolution via Spatially Adaptive De-normalization |
Authors |
윤종수(Jongsu Yoon) ; 김태현(Taehyeon Kim) ; 최윤식(Yoonsik Choe) |
DOI |
https://doi.org/10.5370/KIEE.2021.70.2.402 |
Keywords |
Super-Resolution; Spatially Adaptive De-normalization; Conditional Generative Adversarial Network |
Abstract |
Despite recent advances in technologies on single image super-resolution using deep neural networks, the key question still remains how to recover finer textures and edges. To solve this super-resolution problem, many recent researches have been using conditional generative adversarial network. However, restoring high resolution images using conditional generative adversarial network is disadvantageous in expressing fine textures and edges because there occurs the loss of spatial and high frequency informations. In this paper, informations on images in different scales are added hierarchically by using a spatially adaptive de-normalization method. This method can restore fine textures and edges of an image by inserting different scale informations for each layers in pyramid structure. In experimental results, the efficiency of the proposed method is proved by showing better performance to restore textures and edges in high quality, comparing with other state-of-the art techniques. |