• λŒ€ν•œμ „κΈ°ν•™νšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ν•œκ΅­κ³Όν•™κΈ°μˆ λ‹¨μ²΄μ΄μ—°ν•©νšŒ
  • ν•œκ΅­ν•™μˆ μ§€μΈμš©μƒ‰μΈ
  • Scopus
  • crossref
  • orcid

  1. (School of Energy Engineering, Kyungpook National University, Korea.)



Neural Network, Backpropagation Algorithm, Market Price, Transmission congestion, Electricity market

1. μ„œ λ‘ 

DAB μ»¨λ²„ν„°λŠ” λͺ¨λ“  μŠ€μœ„μΉ˜κ°€ μ˜μ „μ•• μŠ€μœ„μΉ­(ZVS)을 이루기 λ•Œλ¬Έμ— 높은 효율과 μ „λ ₯밀도λ₯Ό κ°–λŠ”λ‹€. λ˜ν•œ λ³€μ••κΈ°λ₯Ό μ‚¬μš©ν•˜μ—¬ μž…λ ₯κ³Ό 좜λ ₯을 μ ˆμ—° ν•˜μ˜€μœΌλ©° λ³€μ••κΈ°λ₯Ό μ€‘μ‹¬μœΌλ‘œ 1μ°¨ μΈ‘κ³Ό 2μ°¨ 츑이 λŒ€μΉ­κ΅¬μ‘°λ‘œ 이루어져 μžˆμ–΄ λ³€μ••κΈ° 양단 μ „μ••μ˜ μœ„μƒ μ²œμ΄λ§Œμ„ μ΄μš©ν•˜μ—¬ μ „λ ₯을 μ–‘λ°©ν–₯으둜 μ‰½κ²Œ μ „λ‹¬ν•œλ‹€. DAB μ»¨λ²„ν„°λŠ” 특히 Solid-State-Transformer 및 직λ₯˜ λ°°μ „ μ‹œμŠ€ν…œμ˜ 핡심 ꡬ성 μš”μ†Œλ‘œ μ‚¬μš©λœλ‹€. 직λ₯˜ λ°°μ „ μ‹œμŠ€ν…œμ€ κ΅¬ν˜„ κ°€λŠ₯ν•œ μ „μ•• 레벨의 μˆ˜μ— 따라 단극성 λ°°μ „ μ‹œμŠ€ν…œκ³Ό μ–‘κ·Ήμ„± λ°°μ „ μ‹œμŠ€ν…œμœΌλ‘œ ꡬ뢄할 수 μžˆλ‹€. 이 쀑 두 μ’…λ₯˜μ˜ μ „μ•• λ ˆλ²¨μ„ μ œκ³΅ν•˜λŠ” μ–‘κ·Ήμ„± λ°°μ „ μ‹œμŠ€ν…œμ€ λ‹€μ–‘ν•œ 정격을 κ°–λŠ” λΆ€ν•˜μ™€μ˜ 연계가 μš©μ΄ν•˜κ³ , 계톡 신뒰성이 λ†’μœΌλ©°, 쀑성점이 접지와 μ—°κ²°λ˜μ–΄ μžˆμœΌλ―€λ‘œ 인체 μ•ˆμ •μ„± λ˜ν•œ λ†’λ‹€ (8)-(10). μ–‘κ·Ήμ„± λ°°μ „ μ‹œμŠ€ν…œμ΄ μ—°κ²°λ˜λŠ” 두 개의 좜λ ₯ 전압을 λ§Œλ“€κΈ° μœ„ν•΄, DAB 컨버터λ₯Ό κ·Έλ¦Ό 1(a)처럼 Triple-Active-Bridge (TAB) μ»¨λ²„ν„°μ²˜λŸΌ μ‚¬μš©ν•˜λŠ” 방법이 μ œμ‹œλ˜μ—ˆλ‹€(11)-(13).

κ·Έλ¦Ό. 1. κΈ°μ‘΄ 이쀑 좜λ ₯ μ–‘λ°©ν–₯ dc-dc 컨버터

Fig. 1. Conventional dual output bidirectional dc-dc converter

../../Resources/kiee/KIEE.2020.69.6.887/fig1.png

κ·Έλ¦Ό. 2. κΈ°μ‘΄ ν•˜ν”„-λΈŒλ¦¬μ§€ ꡬ쑰의 DAB 컨버터

Fig. 2. Conventional half-bridge configuration DAB converter

../../Resources/kiee/KIEE.2020.69.6.887/fig2.png

κ·Έλ¦Ό. 3. μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œ

Fig. 3. Proposed voltage balancer

../../Resources/kiee/KIEE.2020.69.6.887/fig3.png

ν•˜μ§€λ§Œ TAB μ»¨λ²„ν„°μ˜ 경우 각 κ·Ήμ—μ„œ μ†ŒλΉ„λ˜λŠ” μ „λ ₯이 λ‹€λ₯Ό 경우 μ „μ•• λΆˆν‰ν˜•μ΄ λ°œμƒλœλ‹€. μ „μ•• λΆˆν‰ν˜•μ€ μ‹œμŠ€ν…œμ˜ κ³ μž₯을 μ•ΌκΈ°ν•˜λ©° μ „μ•• ν’ˆμ§ˆμ„ μ €ν•˜μ‹œν‚¬ 수 있기 λ•Œλ¬Έμ— TAB μ»¨λ²„ν„°λŠ” ν•­μ‹œμ μœΌλ‘œ μ–‘κ·Ή μ „μ••μ˜ ν‰ν˜•μ„ μœ μ§€μ‹œμΌœμ£ΌλŠ” 좔가적인 μ „μ•• ν‰ν˜• μ œμ–΄κ°€ ν•„μš”ν•˜λ‹€. ν•˜μ§€λ§Œ TAB μ»¨λ²„ν„°μ˜ 경우 극단적인 λΆˆν‰ν˜• λΆ€ν•˜ μ‘°κ±΄μ—μ„œ μ „μ•• ν‰ν˜•μ„ μœ„ν•΄μ„œλŠ” 각 극에 μ‹œλΉ„μœ¨κ³Ό μœ„μƒ 천이 μ œμ–΄κ°€ λͺ¨λ‘ ν•„μš”ν•˜κΈ° λ•Œλ¬Έμ— ν•˜λ“œμ›¨μ–΄μ˜ μ•ˆμ •μ„±μ΄ λ–¨μ–΄μ§ˆ 수 μžˆλ‹€. λΆˆν‰ν˜•ν•œ λΆ€ν•˜ μ‘°κ±΄μ—μ„œ μ „μ•• ν‰ν˜•μ„ μœ„ν•œ λ‹€λ₯Έ λ°©λ²•μœΌλ‘œλŠ” λ²…-λΆ€μŠ€νŠΈ μ „μ•• λ°ΈλŸ°μ„œλ₯Ό μ‚¬μš©ν•˜λŠ” 방법이 μžˆλ‹€ (14),(15). λ²…-λΆ€μŠ€νŠΈ μ „μ•• λ°ΈλŸ°μ„œλŠ” μ‹œλΉ„μœ¨μ΄ 0.5이며 μ„œλ‘œ 상보적인 2개의 μŠ€μœ„μΉ˜μ™€ 1개의 인덕터가 2개의 좜λ ₯ μ»€νŒ¨μ‹œν„°μ™€ μ—°κ²°λ˜μ–΄ κ΅¬μ„±λœλ‹€. κ·Έλ¦Ό 1(b)λŠ” dc 좜λ ₯κ³Ό 이쀑 좜λ ₯ 사이에 λ²…-λΆ€μŠ€νŠΈ μ „μ•• λ°ΈλŸ°μ„œκ°€ μΆ”κ°€λœ ꡬ쑰λ₯Ό λ‚˜νƒ€λ‚Έλ‹€. 좜λ ₯ λΆ€ν•˜ 쑰건이 λΆˆν‰ν˜•ν•  경우 좜λ ₯ μ „μ•• ν‰ν˜•μ„ μœ„ν•΄ λΆ€ν•˜ 차이둜 μΈν•œ dc μ „λ₯˜κ°€ λ²…-λΆ€μŠ€νŠΈ μ „μ•• λ°ΈλŸ°μ„œμ˜ 인덕터λ₯Ό 톡해 흐λ₯Έλ‹€. ν•˜μ§€λ§Œ λ²…-λΆ€μŠ€νŠΈ μ „μ•• λ°ΈλŸ°μ„œλŠ” 좔가적인 μŠ€μœ„μΉ˜μ™€ 게이트 λ“œλΌμ΄λ²„λ₯Ό μš”κ΅¬ν•˜κΈ° λ•Œλ¬Έμ— ν•˜λ“œμ›¨μ–΄μ˜ 효율과 μ „λ ₯ 밀도λ₯Ό κ°μ†Œμ‹œν‚¬ 수 μžˆλ‹€.

λ³Έ λ…Όλ¬Έμ—μ„œλŠ” κ·Έλ¦Ό 2에 λ‚˜νƒ€λ‚œ ν•˜ν”„-λΈŒλ¦¬μ§€ ꡬ쑰의 DAB 컨버터에 이용 κ°€λŠ₯ν•œ μƒˆλ‘œμš΄ μ „μ•• λ°ΈλŸ°μ„œλ₯Ό μ œμ•ˆν•œλ‹€. μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλ₯Ό μ‚¬μš©ν•¨μœΌλ‘œμ¨ ν•˜ν”„-λΈŒλ¦¬μ§€ ꡬ쑰의 DAB μ»¨λ²„ν„°λŠ” 두 개의 좜λ ₯을 κ°€μ§ˆ 수 μžˆλ‹€. λ˜ν•œ μ΄λŠ” 좔가적인 μŠ€μœ„μΉ˜ 없이 ν•˜λ‚˜μ˜ 인덕터와 μ»€νŒ¨μ‹œν„°(LC)둜 κ΅¬μ„±λ˜κΈ° λ•Œλ¬Έμ— κΈ°μ‘΄ DAB μ»¨λ²„ν„°μ˜ 높은 효율과 μ „λ ₯ 밀도λ₯Ό μœ μ§€μ‹œν‚€λ©° 좜λ ₯ μ „μ•• ν‰ν˜•μ„ 이룰 수 μžˆλ‹€. μΆ”κ°€λœ LCλŠ” μ»¨λ²„ν„°μ˜ λ™μž‘λͺ¨λ“œμ— 큰 영ν–₯을 λΌμΉ˜μ§€ μ•ŠκΈ° λ•Œλ¬Έμ— μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DAB μ»¨λ²„ν„°λŠ” 기쑴에 μ‚¬μš©λ˜λŠ” PWM 방식을 κ·ΈλŒ€λ‘œ μ΄μš©ν•œλ‹€. 비둝 μΆ”κ°€λœ 인덕터 μ „λ₯˜μ— μ˜ν•΄ μŠ€μœ„μΉ˜μ˜ ZVS λ²”μœ„κ°€ λ³€ν˜• 될 수 μžˆμ§€λ§Œ ZVS λ²”μœ„λŠ” μΆ”κ°€λœ 인덕터 μ „λ₯˜ λ¦¬ν”Œμ„ μ΄μš©ν•˜μ—¬ νšŒλ³΅ν•  수 μžˆλ‹€. 3 kW ν•˜ν”„-λΈŒλ¦¬μ§€ ꡬ쑰 DAB 컨버터 μ‹œμ œν’ˆμ˜ μ‹€ν—˜μ„ 톡해 μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλ₯Ό κ²€μ¦ν•œλ‹€.

2. λ³Έ λ‘ 

2.1 μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œ

κ·Έλ¦Ό 3(a)λŠ” LCλ₯Ό μ΄μš©ν•œ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλ₯Ό λ‚˜νƒ€λ‚Έλ‹€. μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œμ˜ λ„μΆœκ³Όμ •μ€ λ‹€μŒκ³Ό κ°™λ‹€. 첫째, λ°ΈλŸ°μ‹± 인덕터 $L_{b}$κ°€ 변압기와 λ³‘λ ¬λ‘œ μ—°κ²°λœλ‹€. λ”°λΌμ„œ, λ³€μ••κΈ° 2μ°¨ μΈ‘ μ „μ••κ³Ό λ°ΈλŸ°μ‹± 인덕터 전압은 λ™μΌν•˜κ²Œ 되며($v_{s}=v_{L_{b}}$) λ°ΈλŸ°μ‹± μΈλ•ν„°μ˜ Flux Balance 쑰건에 μ˜ν•΄ 이쀑 좜λ ₯ 전압은 ν‰ν˜•μ„ 이룬닀. λ‘˜μ§Έ, κ·Έλ¦Ό 3(a)와 같이 변압기와 λ°ΈλŸ°μ‹± 인덕터 $L_{b}$ 사이에 λ°ΈλŸ°μ‹± μ»€νŒ¨μ‹œν„° $C_{b}$κ°€ μ—°κ²°λœλ‹€. 즉, μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλŠ” ꡬ쑰상 λ³€μ••κΈ°κ°€ 두 좜λ ₯의 쀑성점과 μ—°κ²°λ˜λŠ” ν•˜ν”„-λΈŒλ¦¬μ§€ ꡬ쑰의 DAB 컨버터(κ·Έλ¦Ό 2)에 μ μš©ν•  수 μžˆλ‹€. κ·Έλ¦Ό 3(b)λŠ” μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB 컨버터λ₯Ό λ‚˜νƒ€λ‚Έλ‹€.

λ°ΈλŸ°μ‹± μ»€νŒ¨μ‹œν„° $C_{b}$없이 λ°ΈλŸ°μ‹± 인덕터 $L_{b}$λ§Œμ„ μ‚¬μš©ν•˜λŠ” 경우 λ³€μ••κΈ°μ˜ μžν™” μΈλ•ν„΄μŠ€μ™€ λ°ΈλŸ°μ‹± 인덕터 $L_{b}$κ°€ λ³‘λ ¬λ‘œ μ—°κ²°λœλ‹€. μ»€νŒ¨μ‹œν„° $C_{o1}$ 및 $C_{o2}$의 평균 μ „λ₯˜λŠ” 0이기 λ•Œλ¬Έμ—, λΆˆν‰ν˜• λΆ€ν•˜ 쑰건(즉, $R_{o1}\ne R_{o2}$ λ˜λŠ” $P_{o1}\ne P_{o2}$)일 경우 dc μ „λ₯˜κ°€ λ°œμƒν•œλ‹€. 이 쀑 μΌλΆ€λŠ” μžν™” μΈλ•ν„΄μŠ€λ‘œ 흐λ₯΄λ©° μ΄λŠ” λ³€μ••κΈ° 포화λ₯Ό λ°œμƒμ‹œν‚¨λ‹€. λ³€μ••κΈ° 포화λ₯Ό λ°©μ§€ν•˜κΈ° μœ„ν•΄, dc-blocking μ»€νŒ¨μ‹œν„° 역할을 ν•˜λ©° 곡진 ν˜„μƒμ„ ν”Όν•  수 μžˆλ„λ‘ μΆ©λΆ„νžˆ 큰 λ°ΈλŸ°μ‹± μ»€νŒ¨μ‹œν„° $C_{b}$κ°€ ν•„μš”ν•˜λ‹€.

또 λ‹€λ₯Έ 경우둜 λ°ΈλŸ°μ‹± 인덕터 $L_{b}$ 없이 λ°ΈλŸ°μ‹± μ»€νŒ¨μ‹œν„° $C_{b}$만 μ‚¬μš©ν•  경우 λ³€μ••κΈ° 포화 λ¬Έμ œλŠ” λ°©μ§€λ˜μ§€λ§Œ, 두 좜λ ₯ 전압은 λ™μΌν•œ 좜λ ₯ μ „λ₯˜μ™€ λΆˆν‰ν˜• λΆ€ν•˜λ‘œ 인해 μ „μ•• ν‰ν˜•μ„ 달성할 수 μ—†λ‹€. λ”°λΌμ„œ μ œμ•ˆλœ μ „μ•• λ°ΈλŸ°μ„œλŠ” λ°ΈλŸ°μ‹± 인덕터 $L_{b}$와 λ°ΈλŸ°μ‹± μ»€νŒ¨μ‹œν„° $C_{b}$λ₯Ό λͺ¨λ‘ μ‚¬μš©ν•¨μœΌλ‘œμ¨ μ™„μ„±λœλ‹€. λ°ΈλŸ°μ‹± μΈλ•ν„°μ˜ 평균 μ „λ₯˜λŠ” 좜λ ₯ μ „λ₯˜ $I_{o1}$κ³Ό $I_{o2}$의 차이와 κ°™λ‹€.

(1)
$i_{L_{b}.avg}=I_{o2}-I_{o1}$

2.2 ν‰ν˜• λΆ€ν•˜ 쑰건일 λ•Œ λ™μž‘ λͺ¨λ“œ

μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œμ— μ˜ν•œ λ™μž‘λͺ¨λ“œμ˜ λ³€ν™”λ₯Ό λ‚˜νƒ€λ‚΄κΈ° μœ„ν•΄, λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 ν•˜ν”„ λΈŒλ¦¬μ§€ DAB (DHB) 컨버터에 λŒ€ν•΄μ„œ ν•΄μ„ν•œλ‹€(κ·Έλ¦Ό 3(b)). κ·Έλ¦Ό 4λŠ” 두 개의 좜λ ₯ λΆ€ν•˜κ°€ ν‰ν˜•μ„ 이룰 λ•Œ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°μ˜ μ£Όμš” νŒŒν˜•μ„ λ‚˜νƒ€λ‚Έλ‹€. κΈ°μ‘΄ DHB 컨버터와 λ™μΌν•˜κ²Œ $S_{1}$, $S_{3}$λŠ” 각각 $S_{2}$, $S_{4}$와 μƒλ³΄μ μœΌλ‘œ λ™μž‘ν•˜λ©° 0.5의 μ‹œλΉ„μœ¨μ„ 가진닀. $S_{1}$κ³Ό $S_{3}$의 μœ„μƒκ° $\phi$을 μ‘°μ ˆν•˜μ—¬ 좜λ ₯을 μ œμ–΄ν•œλ‹€. λ”°λΌμ„œ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°μ˜ λ™μž‘ λͺ¨λ“œλŠ” 4개 이며 κΈ°μ‘΄ DHB μ»¨λ²„ν„°μ˜ λ™μž‘ λͺ¨λ“œμ™€ μœ μ‚¬ν•˜λ‹€. 1μ°¨ μΈ‘ λ™μž‘ λͺ¨λ“œλŠ” μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œμ— μ˜ν•΄ λ³€ν•˜μ§€ μ•ŠκΈ° λ•Œλ¬Έμ—, λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œμ— μ˜ν•œ 2μ°¨ μΈ‘ λ³€ν™”κ°€ μ£Όμš”ν•˜κ²Œ λΆ„μ„λœλ‹€. ν•΄μ„μ˜ κ°„μ†Œν™”λ₯Ό μœ„ν•΄ λͺ¨λ“  μ†ŒμžλŠ” 이상적이라고 κ°€μ •ν•˜μ˜€λ‹€.

2μ°¨ μΈ‘ 변압기와 μŠ€μœ„μΉ˜ 전압은 λ³€ν™”κ°€ μ—†μœΌλ©° μŠ€μœ„μΉ˜ μ „λ₯˜λŠ” λ³€μ••κΈ° μ „λ₯˜μ— λ°ΈλŸ°μ‹± 인덕터 μ „λ₯˜ $i_{L_{b}}$κ°€ μΆ”κ°€λ˜μ–΄ λ‹€μŒκ³Ό 같이 λ‚˜νƒ€λ‚Ό 수 μžˆλ‹€.

(2)
$\begin{cases} i_{S_{3}}=-i_{s}+i_{L_{b}}&[0-t_{3}]\\ i_{S_{4}}=i_{s}-i_{L_{b}}&[t_{3}-T_{s}] \end{cases}$

ν‰ν˜• λΆ€ν•˜ 쑰건을 이루면 두 개의 좜λ ₯ μ „μ••κ³Ό 좜λ ₯ μ „λ₯˜ λͺ¨λ‘ ν‰ν˜•μ„ 이룬닀. λ”°λΌμ„œ λ°ΈλŸ°μ‹± 인덕터 $L_{b}$의 평균 μ „λ₯˜λŠ” 0이며 μ „λ₯˜ λ¦¬ν”Œ $\Delta i_{L_{b}}$만 μ‘΄μž¬ν•œλ‹€. μΆ”κ°€λœ λ°ΈλŸ°μ‹± 인덕터 $L_{b}$ λ•Œλ¬Έμ— $i_{S_{3}}$ 및 $i_{S_{4}}$의 μŠ€μœ„μΉ˜μ˜ μ΅œλŒ“κ°’μ€ κ·Έλ¦Ό 4와 같이 λ°ΈλŸ°μ‹± 인덕터 μ „λ₯˜ λ¦¬ν”Œμ˜ 절반 $0.5\Delta i_{L_{b}}$κ³Ό 2μ°¨ λ³€μ••κΈ° μ „λ₯˜ $i_{s}$의 ν•©κ³Ό κ°™λ‹€. 비둝 2μ°¨ μΈ‘ μŠ€μœ„μΉ˜ μ΅œλŒ€ μ „λ₯˜λŠ” κΈ°μ‘΄ DHB 컨버터에 λΉ„ν•΄ μ¦κ°€λ˜μ§€λ§Œ, λ°λ“œνƒ€μž„ λ™μ•ˆ 2μ°¨ μΈ‘ μŠ€μœ„μΉ˜μ˜ λ°”λ”” λ‹€μ΄μ˜€λ“œλ₯Ό ν†΅κ³Όν•˜λŠ” μ „λ₯˜κ°€ 증가 λ˜λ―€λ‘œ λ°ΈλŸ°μ‹± 인덕터 $L_{b}$λŠ” μŠ€μœ„μΉ˜ $S_{3}$와 $S_{4}$의 ZVS λ²”μœ„λ₯Ό λŠ˜λ¦¬λŠ” 역할을 ν•  수 μžˆλ‹€.

κ·Έλ¦Ό. 4. 좜λ ₯λΆ€ν•˜κ°€ ν‰ν˜•μΌ λ•Œ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°μ˜ μ£Όμš”νŒŒν˜•

Fig. 4. Key waveforms of the DHB converter with the proposed voltage balancer when output loads are balanced

../../Resources/kiee/KIEE.2020.69.6.887/fig4.png

2.3 λΆˆν‰ν˜• λΆ€ν•˜ 쑰건일 λ•Œ λ™μž‘λͺ¨λ“œ

κ·Έλ¦Ό 5λŠ” λΆˆν‰ν˜• λΆ€ν•˜ μ‘°κ±΄μ—μ„œ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°μ˜ μ£Όμš” νŒŒν˜•μ„ λ‚˜νƒ€λ‚Έλ‹€. $\phi_{un}$κ³Ό $I_{pk.un}$은 좜λ ₯ λΆ€ν•˜κ°€ λΆˆν‰ν˜•μΌ λ•Œ μœ„μƒκ°κ³Ό λ³€μ••κΈ° μ „λ₯˜λ₯Ό λ‚˜νƒ€λ‚Έλ‹€. 전압이 μΌμ •ν•˜κ²Œ μ œμ–΄λœ μƒνƒœμ—μ„œ 좜λ ₯ μ €ν•­μ˜ 합이 μ¦κ°€λ˜λ―€λ‘œ(총 λΆ€ν•˜κ°€ κ°μ†Œ), $\phi_{un}$κ³Ό $I_{pk.un}$λŠ” $\phi$와 $I_{pk}$보닀 μž‘λ‹€. μŠ€μœ„μΉ˜ $S_{3}$와 $S_{4}$의 μ‹œλΉ„μœ¨($D_{S_{3}}$ 및 $D_{S_{4}}$)은 좜λ ₯ λΆ€ν•˜ 쑰건에 관계없이 항상 0.5둜 λ™μΌν•˜λ‹€. λ”°λΌμ„œ λ°ΈλŸ°μ‹± 인덕터 $L_{b}$의 Flux Balance 쑰건에 μ˜ν•΄ 두 좜λ ₯ μ „μ••($V_{o1}$, $V_{o2}$)은 항상 ν‰ν˜•μ„ 이룬닀.

κ·Έλ¦Ό. 5. 좜λ ₯λΆ€ν•˜κ°€ λΆˆν‰ν˜•μΌ λ•Œ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°μ˜ μ£Όμš”νŒŒν˜•

Fig. 5. Key waveforms of the DHB converter with the proposed voltage balancer when output loads are unbalanced

../../Resources/kiee/KIEE.2020.69.6.887/fig5.png

(3)
$D_{S_{3}}T_{s}V_{o1}=D_{S_{4}}T_{s}V_{o2}$

좜λ ₯ 전압이 ν”Όλ“œλ°± μ œμ–΄μ— μ˜ν•΄ 고정될 경우 인덕터 μ „λ₯˜ λ¦¬ν”Œ $\Delta i_{L_{b}}$ λ˜ν•œ λΆ€ν•˜μ™€ 관계없이 κ³ μ •λœλ‹€. κ·Έλ¦Ό 5와 같이 μŠ€μœ„μΉ˜μ—λŠ” 인덕터와 λ³€μ••κΈ° μ „λ₯˜μ˜ 합이 흐λ₯΄κΈ° λ•Œλ¬Έμ—, μŠ€μœ„μΉ˜ μ „λ₯˜ μ΅œλŒ“κ°’($i_{S_{3}.peak}$ 및 $i_{S_{4}.peak}$)은 λ°ΈλŸ°μ‹± 인덕터 μ „λ₯˜($0.5i_{L_{b}}$, $i_{L_{b}.avg}$)와 λ³€μ••κΈ° 2μ°¨ μΈ‘ μ „λ₯˜μ˜ ν•©κ³Ό κ°™λ‹€. 즉, κ·Έλ¦Ό 5처럼 λΆˆν‰ν˜• λΆ€ν•˜ μ‘°κ±΄μ—μ„œ μŠ€μœ„μΉ˜ μ „λ₯˜λŠ” μ „λ₯˜ λ¦¬ν”Œ λ³€κ²½ 없이 λ°ΈλŸ°μ‹± μΈλ•ν„°μ˜ 평균 μ „λ₯˜λ§ŒνΌ 증가 및 κ°μ†Œν•œλ‹€. κ·Έλ¦Ό 5(a) μƒνƒœμ—μ„œ μŠ€μœ„μΉ˜ μ „λ₯˜ μ΅œλŒ“κ°’μ€ λ‹€μŒκ³Ό 같이 λ‚˜νƒ€λ‚Ό 수 μžˆλ‹€.

(4)
$$I_{S_{5, \text { peak }}}=\left(I_{\text {pk }, u_{n}}+\frac{1}{2} \Delta i_{L_{b}}\right)+i_{L_{f} \text { ave }}$$

(5)
$I_{S_{4}.peak}=-(I_{pk.un}+\dfrac{1}{2}\Delta i_{L_{b}})-i_{L_{b}.avg}$

이듀은 ν‰ν˜• λΆ€ν•˜ μ‘°κ±΄μ—μ„œμ˜ μŠ€μœ„μΉ˜ μ „λ₯˜ μ΅œλŒ“κ°’κ³Ό λΆˆν‰ν˜• λΆ€ν•˜λ‘œ μΈν•œ 인덕터 평균 μ „λ₯˜μ˜ ν•©μœΌλ‘œ κ΅¬μ„±λœλ‹€.

극단적인 λΆˆν‰ν˜• λΆ€ν•˜ μƒνƒœλŠ” ν•œ 좜λ ₯이 ν’€ λ‘œλ“œλ˜κ³  λ‹€λ₯Έ 좜λ ₯이 λ¬΄λΆ€ν•˜μΌ λ•Œ λ°œμƒν•œλ‹€. μ΄λŸ¬ν•œ λΆ€ν•˜ μ‘°κ±΄μ—μ„œ λ°ΈλŸ°μ‹± 인덕터 μ „λ₯˜λŠ” μ΅œλŒ“κ°’μ„ 가지며 λ”°λΌμ„œ, μŠ€μœ„μΉ˜ μ „λ₯˜ μ΅œλŒ“κ°’μ€ λ‹€μŒκ³Ό κ°™λ‹€.

(6)
$\left | I_{S_{3,\:4}.\max}\right | =\dfrac{1}{2}I_{pk}+\dfrac{1}{2}\Delta i_{L_{b}}+I_{o}$

$0-t_{3}$κ΅¬κ°„μ—μ„œ 좜λ ₯ $C_{o1}$으둜 μ „λ ₯이 μ „μ†‘λ˜λ©°, $t_{3}-T_{s}$μ—μ„œ 좜λ ₯ $C_{o2}$으둜 μ „λ ₯이 μ „μ†‘λœλ‹€. μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œμ—μ˜ν•΄ 좜λ ₯ 전압이 ν‰ν˜•μ„ μœ μ§€ν•  μ‹œ, 전체 좜λ ₯ μ „λ ₯κ³Ό 각각의 좜λ ₯ μ „λ ₯은 λ‹€μŒκ³Ό 같이 ꡬ할 수 μžˆλ‹€.

(7)
\begin{align*} P_{o}=\dfrac{V_{i n}V_{o}\dfrac{\phi}{\pi}(1-\dfrac{\phi}{\pi})}{8fn L_{lk}}\\ P_{o1}=\dfrac{V_{i n}V_{o}\dfrac{\phi}{\pi}(1-\dfrac{\phi}{\pi})}{16fn L_{lk}}-\dfrac{V_{o}i_{L_{b}.avg}(2-\dfrac{\phi}{\pi})}{4f}\\ P_{o2}=\dfrac{V_{i n}V_{o}\dfrac{\phi}{\pi}(1-\dfrac{\phi}{\pi})}{16fn L_{lk}}+\dfrac{V_{o}i_{L_{b}.avg}(2-\dfrac{\phi}{\pi})}{4f} \end{align*}

κ·Έλ¦Ό 5처럼 λΆ€ν•˜ μƒνƒœμ— 따라 $i_{S_{3}}$와 $i_{S_{4}}$λŠ” λ‹€λ₯Έ νŒŒν˜•μ„ 보이게 되며 μŠ€μœ„μΉ˜ $S_{3}$와 $S_{4}$ 쀑 ν•˜λ‚˜λŠ” ZVS λ²”μœ„κ°€ λŠ˜μ–΄λ‚˜μ§€λ§Œ λ‚˜λ¨Έμ§€ ν•˜λ‚˜λŠ” 쀄어든닀. ν•˜μ§€λ§Œ μ΄λŠ” $\Delta i_{L_{b}}$의 값을 μ‘°μ •ν•¨μœΌλ‘œμ¨ $i_{L_{b}.avg}$에 μ˜ν•΄ 쀄어든 ZVS λ²”μœ„λ₯Ό νšŒλ³΅ν•  수 μžˆλ‹€.

ν‘œ 1. 2μ°¨ μΈ‘ νŠΉμ§• 비ꡐ

Table 1. Comparison of the secondary side characteristics

No. of switches

$R_{o1}=R_{o2}=R$

Extreme load conditions

Switch current

ZVS range

Switch current

ZVS range

DHB converter with conventional voltage balancer

4

DHB : $I_{pk}$

BBVB : $0.5\Delta i_{L_{b}}$

No changed

DHB : $0.5I_{pk}$

BBVB : $0.5\Delta i_{L_{b}}+I_{o}$

No changed

DHB converter with proposed voltage balancer

2

$I_{pk}+0.5\Delta i_{L_{b}}$

Extended

$0.5(I_{pk}+\Delta i_{L_{b}})+I_{o}$

One : no changed

The other : extended

Note 1 : ZVS range is a value compared to conventional DHB converter.

Note 2 : Balancing inductor $L_{b}$ is designed by (8).

BBVB : Buck-boost voltage balancer

κΈ°μ‘΄ DHB 컨버터보닀 넓은 ZVS λ²”μœ„λ₯Ό 가지기 μœ„ν•΄μ„œλŠ”$0.5\Delta i_{L_{b}}$κ°€ $i_{L_{b}.avg}$의 μ΅œλŒ“κ°’λ³΄λ‹€ μ»€μ•Όν•œλ‹€($0.5\Delta i_{L_{b}}>i_{L_{b}.avg(\max)}$ ). 이λ₯Ό λ§Œμ‘±ν•˜λŠ” λ°ΈλŸ°μ‹± 인덕터 λ²”μœ„λŠ” 식(8)κ³Ό κ°™μœΌλ©° λ°ΈλŸ°μ‹± 인덕터와 λˆ„μ„€μΈλ•ν„΄μŠ€μ˜ λΉ„λŠ” κ·Έλ¦Ό 6처럼 λ‚˜νƒ€λ‚Ό 수 μžˆλ‹€.

(8)
$$L_{b}<\frac{n^{2} L_{l k}}{\frac{\phi_{e x t}}{\pi}\left(1-\frac{\phi_{e x t}}{\pi}\right)}$$

$n$은 λ³€μ••κΈ°μ˜ ν„΄μˆ˜λΉ„μ΄λ©° $\phi_{ext}$λŠ” 좜λ ₯ λΆ€ν•˜ 쑰건이 κ·Ήλ„λ‘œ λΆˆν‰ν˜• ν•  μ‹œμ˜ μœ„μƒκ°μ΄λ‹€.

κ·Έλ¦Ό. 6. ZVS λ²”μœ„ 보상을 μœ„ν•œ λˆ„μ„€ μΈλ•ν„΄μŠ€μ™€ λ°ΈλŸ°μ‹± μΈλ•ν„΄μŠ€μ˜ λΉ„

Fig. 6. Inductance ratio curves to maintain conventional VS range

../../Resources/kiee/KIEE.2020.69.6.887/fig6.png

2.4 μ‘΄ λ²…-λΆ€μŠ€νŠΈ μ „μ•• λ°ΈλŸ°μ„œμ™€ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œμ˜ 비ꡐ

μ•žμ„œ μ–ΈκΈ‰ν–ˆλ“―μ΄, κΈ°μ‘΄ ν˜Ήμ€ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°λŠ” 1μ°¨ μΈ‘ νŠΉμ„±μ΄ κΈ°μ‘΄ DHB 컨버터와 κ°™λ‹€. λ”°λΌμ„œ ν‘œ 1은 ν‰ν˜• λΆ€ν•˜ 쑰건과 극단적인 λΆ€ν•˜ μ‘°κ±΄μ—μ„œ 두 개의 μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°μ˜ 2μ°¨ μΈ‘ 비ꡐλ₯Ό λ‚˜νƒ€λ‚Έλ‹€. DHB μ»¨λ²„ν„°μ˜ μŠ€μœ„μΉ˜ 전압은 μΆ”κ°€λœ μ „μ•• λ°ΈλŸ°μ„œμ˜ 영ν–₯을 받지 μ•ŠλŠ”λ‹€. κΈ°μ‘΄ ν˜Ήμ€ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°μ˜ μŠ€μœ„μΉ˜λŠ” 각각 μ΅œλŒ€ λΆ€ν•˜ 쑰건과 κ·Ήν•œ λΆ€ν•˜ 쑰건일 λ•Œ μ΅œλŒ€ 정격 μ „λ₯˜λ₯Ό 가진닀. κΈ°μ‘΄ μ „μ•• λ°ΈλŸ°μ„œμ˜ μŠ€μœ„μΉ˜λŠ” μ „λ₯˜λŠ” κ·Ήν•œ λΆ€ν•˜ 쑰건일 λ•Œ μ΅œλŒ€ μ „λ₯˜λ₯Ό κ°€μ§€μ§€λ§Œ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλŠ” μΆ”κ°€λ˜λŠ” μŠ€μœ„μΉ˜κ°€ μ—†λ‹€. μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλŠ” κΈ°μ‘΄ μ „μ•• λ°ΈλŸ°μ„œμ— λΉ„ν•΄ μΆ”κ°€ μ»€νŒ¨μ‹œν„°λ₯Ό 가지며 DHB μ»¨λ²„ν„°μ˜ μŠ€μœ„μΉ˜ μ „λ₯˜λ₯Ό μƒμŠΉμ‹œν‚€μ§€λ§Œ, μŠ€μœ„μΉ˜μ˜ ZVS λ²”μœ„λ₯Ό λ„“νžŒλ‹€. λ˜ν•œ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλŠ” 좔가적인 μŠ€μœ„μΉ˜λ₯Ό μ‚¬μš©ν•˜μ§€ μ•ŠκΈ° λ•Œλ¬Έμ— κΈ°μ‘΄ DHB μ»¨λ²„ν„°μ˜ 높은 효율과 μ „λ ₯ 밀도λ₯Ό μœ μ§€ν•  수 μžˆλ‹€. 결과적으둜 μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°λŠ” κ΄‘λ²”μœ„ν•œ λΆ€ν•˜ μ‘°κ±΄μ—μ„œ μ „μ•• ν‰ν˜•μ„ μ΄λ£¨λŠ” 이쀑 좜λ ₯을 κ°€μ§ˆ 수 있으며 높은 효율과 μ „λ ₯ 밀도λ₯Ό μœ μ§€ν•  수 μžˆλ‹€.

3. μ‹€ν—˜ κ²°κ³Ό

μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œμ˜ μ„±λŠ₯ 검증을 μœ„ν•΄ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 3 kW DHB μ»¨λ²„ν„°μ˜ μ‹œμ œν’ˆμ„ μ œμž‘ν•˜μ—¬ μ‹€ν—˜μ„ μ§„ν–‰ν•˜μ˜€λ‹€. ν‘œ 2λŠ” μ‹€ν—˜μ—μ„œ μ‚¬μš©λœ μ „μ•• λ°ΈλŸ°μ„œμ™€ DHB μ»¨λ²„ν„°μ˜ 전기적 사양을 λ‚˜νƒ€λ‚Έλ‹€. μŠ›-슀루 문제λ₯Ό λ°©μ§€ν•˜κΈ° μœ„ν•΄ 600 ns λ°λ“œνƒ€μž„μ΄ $S_{1}$κ³Ό $S_{2}$($S_{3}$와 $S_{4}$) 사이에 μ μš©λ˜μ—ˆλ‹€. μΆ©λΆ„ν•œ ZVS λ²”μœ„λ₯Ό μœ„ν•΄ μΈλ•ν„°λŠ” 140 ΞΌH둜 μ œμž‘λ˜μ—ˆμœΌλ©° 좜λ ₯ μ „μ••μ˜ ν•©($V_{o}=V_{o1}+V_{o2}$)은 μΌμ •ν•˜κ²Œ 400 V둜 μ œμ–΄λ˜μ—ˆλ‹€. λ°ΈλŸ°μ‹± μ»€νŒ¨μ‹œν„°μ˜ μ „μ•• λ¦¬ν”Œμ΄ 좜λ ₯ μ „μ••μ˜ 5%보닀 μž‘μ€ μˆ˜μ€€μœΌλ‘œ μœ μ§€ν•  수 μžˆλ„λ‘ 10 ΞΌF μ»€νŒ¨μ‹œν„°λ₯Ό μ‚¬μš©ν•˜μ˜€λ‹€.

κ·Έλ¦Ό 7κ³Ό 8은 ν‰ν˜• λΆ€ν•˜ 쑰건과 극단적인 λΆˆν‰ν˜• λΆ€ν•˜ μ‘°κ±΄μ—μ„œ λ‚˜νƒ€λ‚œ μ‹€ν—˜ νŒŒν˜•μ΄λ‹€. ν‰ν˜• λΆ€ν•˜ 쑰건일 경우 μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλŠ” μ΅œλŒ€ λΆ€ν•˜ 3 kWμ—μ„œ μ‹€ν—˜λ˜μ—ˆλ‹€($P_{o1}=P_{o2}=1.5 k W$). 극단적인 λΆˆν‰ν˜• λΆ€ν•˜ 쑰건을 μœ„ν•΄ μ˜λ„μ μœΌλ‘œ λΆ€ν•˜ μ €ν•­ ν•˜λ‚˜λ₯Ό 좜λ ₯μ—μ„œ λΆ„λ¦¬ν•˜μ˜€λ‹€($[P_{o1}=0 W,\: P_{o2}=1.5 k W]$ ν˜Ήμ€ $[P_{o1}=1.5 k W,\:$ $P_{o2}= 0 W]$). 각 λΆ€ν•˜μ—μ„œ μ†ŒλΉ„λ˜λŠ” μ „λ ₯은 μ „λ ₯계츑기 YOKO GAWA WT1800을 μ΄μš©ν•˜μ—¬ μΈ‘μ •λ˜μ—ˆλ‹€. κ·Έλ¦Ό 7은 각 λΆ€ν•˜ μ‘°κ±΄μ—μ„œ λ‚˜νƒ€λ‚œ 좜λ ₯ μ „μ••κ³Ό λ°ΈλŸ°μ‹± 인덕터 전압이닀. λ°ΈλŸ°μ‹± μΈλ•ν„°μ˜ Flux balance 쑰건과 ν‰ν˜•λœ 좜λ ₯ 전압이 λΆ€ν•˜ 쑰건에 관계없이 항상 μ΄λ£¨μ–΄μ§€λŠ” 것을 확인 ν•  수 μžˆλ‹€. κ·Έλ¦Ό 8은 각 λΆ€ν•˜ μ‘°κ±΄μ—μ„œ λ‚˜νƒ€λ‚œ λ³€μ••κΈ° μ „λ₯˜μ™€ λ°ΈλŸ°μ‹± 인덕터 μ „λ₯˜μ΄λ‹€. μ•žμ„œ μ–ΈκΈ‰ν–ˆλ“―μ΄, λ°ΈλŸ°μ‹± μ»€νŒ¨μ‹œν„° λ•Œλ¬Έμ— 좜λ ₯ λΆ€ν•˜ 차이에 μ˜ν•œ λͺ¨λ“  dc μ „λ₯˜λŠ” λ°ΈλŸ°μ‹± 인덕터λ₯Ό 톡해 흐λ₯΄λ©° λ³€μ••κΈ° ν¬ν™”λŠ” λ°œμƒν•˜μ§€ μ•ŠλŠ”λ‹€. λΆˆν‰λ“±ν•œ λΆ€ν•˜ 쑰건 일 λ•Œ, λ³€μ••κΈ° μ „λ₯˜, μœ„μƒκ°, 좜λ ₯ μ „λ ₯은 쀄어든닀. κ·Έλ¦Ό 9λŠ” ν‰ν˜•λΆ€ν•˜ μƒνƒœμ—μ„œ λΆ€ν•˜ 변동에 λ”°λ₯Έ μ»¨λ²„ν„°μ˜ 효율 비ꡐ κ·Έλž˜ν”„μ΄λ‹€.

ν‘œ 2. μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°μ˜ 전기적 사양

Table 2. Electrical specifications of the DHB converter with the proposed voltage balancer

Input voltage ($V_{i n}$)

400 [V]

Output voltages ($V_{o1},\: V_{o2}$)

200 [V]

Output power ($P_{o}$)

3 [kW]

Output resistors ($R_{o1},\: R_{o2}$)

27 [Ξ©]

Switching frequency ($f_{sw}$)

50 [kHz]

Leakage inductor ($L_{lk}$)

27 [ΞΌH]

Balancing inductor ($L_{b}$)

140 [ΞΌH]

Balancing capacitor ($C_{b}$)

10 [ΞΌF]

Input and output capacitors ($C_{i},\: C_{o}$)

50 [ΞΌF]

Turns ratio ($n$)

1

κ·Έλ¦Ό. 7. 이쀑 좜λ ₯κ³Ό λ°ΈλŸ°μ‹± 인덕터 μ „μ••μ˜ μ‹€ν—˜ κ²°κ³Ό νŒŒν˜•

Fig. 7. Experiment waveforms of the dual output and balancing inductor voltage

../../Resources/kiee/KIEE.2020.69.6.887/fig7_1.png

../../Resources/kiee/KIEE.2020.69.6.887/fig7_8.png

κ·Έλ¦Ό. 8. 변압기와 λ°ΈλŸ°μ‹± 인덕터 μ „λ₯˜μ˜ μ‹€ν—˜ κ²°κ³Ό νŒŒν˜•

Fig. 8. Experiment waveforms of the transformer and balancing inductor currents

../../Resources/kiee/KIEE.2020.69.6.887/fig8_1.png

../../Resources/kiee/KIEE.2020.69.6.887/fig8_2.png

κ·Έλ¦Ό. 9. μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 DHB μ»¨λ²„ν„°μ˜ 효율 κ·Έλž˜ν”„

Fig. 9. Measured efficiency cureves

../../Resources/kiee/KIEE.2020.69.6.887/fig9.png

4. κ²° λ‘ 

λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μΆ”κ°€λ˜λŠ” μŠ€μœ„μΉ˜ 없이 ν•˜λ‚˜μ˜ 인덕터와 μ»€νŒ¨μ‹œν„°λ§Œμ„ μ΄μš©ν•œ μƒˆλ‘œμš΄ μ „μ•• λ°ΈλŸ°μ„œλ₯Ό μ œμ•ˆν•˜μ˜€λ‹€. μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλŠ” 좜λ ₯ μ»€νŒ¨μ‹œν„°μ˜ 쀑성점이 변압기와 μ—°κ²°λ˜λŠ” ν•˜ν”„-λΈŒλ¦¬μ§€ ꡬ쑰의 DAB 컨버터에 적용 κ°€λŠ₯ν•˜λ‹€. 이 DAB 컨버터듀은 μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλ₯Ό μ‚¬μš©ν•¨μœΌλ‘œμ¨ 기쑴처럼 ν•œ 개의 좜λ ₯뿐만 μ•„λ‹ˆλΌ μ „μ•• ν‰ν˜•μ„ μ΄λ£¨λŠ” 이쀑 좜λ ₯을 ꡬ성할 수 μžˆλ‹€. μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œμ˜ 인덕터와 μ»€νŒ¨μ‹œν„°κ°€ 변압기에 μ—°κ²°λ˜μ§€λ§Œ, μ΄λŠ” κΈ°μ‘΄ DAB μ»¨λ²„ν„°μ˜ PWM 방식과 λ™μž‘μ— 큰 영ν–₯을 λΌμΉ˜μ§€ μ•ŠλŠ”λ‹€. 비둝 μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œμ˜ 인덕터에 μ˜ν•΄ μŠ€μœ„μΉ˜ μ „λ₯˜ νŒŒν˜•μ΄ λ³€ν™”λ˜μ–΄ μ΅œλŒ€ μ „λ₯˜κ°€ 쑰금 μ¦κ°€ν•˜μ§€λ§Œ, μ΄λŠ” ZVS λ²”μœ„λ₯Ό μ¦κ°€μ‹œν‚€λŠ” 역할을 ν•  수 μžˆλ‹€. κ²Œλ‹€κ°€ μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œλŠ” 좔가적인 μŠ€μœ„μΉ˜κ°€ ν•„μš”ν•˜μ§€ μ•ŠκΈ° λ•Œλ¬Έμ— κΈ°μ‘΄ DAB μ»¨λ²„ν„°μ˜ 고효율과 높은 μ „λ ₯ 밀도λ₯Ό μœ μ§€μ‹œν‚¨λ‹€. μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œκ°€ 적용된 3 kW DHB 컨버터 μ‹œμ œν’ˆμ˜ μ‹€ν—˜μ„ 톡해 μ œμ•ˆν•œ μ „μ•• λ°ΈλŸ°μ„œμ˜ μ„±λŠ₯을 κ²€μ¦ν•˜μ˜€λ‹€.

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20194030202310).

References

1 
M. Yilmaz, P. T. Krein, May 2013, Review of battery charger to- pologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles, IEEE Transactions on Power Electronics, Vol. 28, No. 5, pp. 2151-2169DOI
2 
A. Abedini, T. Lipo, 2010, A novel topology of solid state transformer, Power Electronic & Drive Systems & Tech- nologies Conference, pp. 101-105DOI
3 
F. Krismer, J. W. Kolar, July 2012, Efficiency-optimized high current dual active bridge converter for automotive applications, IEEE Transactions on Industrial Electronics, Vol. 59, No. 7, pp. 2745-2760DOI
4 
C. Zhao, S. D. Round, J. W. Kolar, September 2008, An isolated three- Port bidirectional DC–DC converter with decoupled power flow management, IEEE Transactions on Power Electronics, Vol. 23, No. 5, pp. 2443-2453DOI
5 
R. W. A. A. De Doncker, D. M. Divan, M. H. Kheraluwala, January- February 1991, A three-phase soft-switched high-power-density DC/DC converter for high-power applications, IEEE Transactions on Industry Applications, Vol. 27, No. 1, pp. 63-73DOI
6 
F. Xue, R. Yu, A. Q. Huang, November 2017, A 98.3% efficient GaN isolated bidirectional DC–DC converter for DC distribution Energy storage system applications, IEEE Transactions on Industrial Electronics, Vol. 64, No. 11, pp. 9094-9103DOI
7 
Q. Ye, R. Mo, H. Li, September 2017, Low frequency resonance suppression of a dual-active-bridge (DAB) DC/DC converter enabled DC distribution, IEEE Journal of Emerging Selected Topics Power Electronics, Vol. 5, No. 3, pp. 982-994DOI
8 
H. Kakigano, Y. Miura, T. Ise, December 2010, Low-voltage bipolar- type DC microgrid for super high quality distribution, IEEE Transactions on Power Electronics, Vol. 25, No. 12, pp. 3066-3075DOI
9 
A. Filba-Martinez, S. Busquets-Monge, J. Nicolas-Apruzzese, J. Bordonau, February 2016, Operating principle and performance optimization of a three-level NPC dual-active-bridge DC-DC converter, IEEE Transactions on Industrial Electronics, Vol. 63, No. 2, pp. 678-690DOI
10 
F. Gao, D. Rogers, March 2018, Duty-cycle plus phase-shift control for a dual active half bridge based bipolar DC distribution, IEEE Applied Power Electronics Conference and ExpositionDOI
11 
Hyeok-Jin Yun, Dong-Keun Jeong, Ho-Sung Kim, Myoungho Kim, Ju-Won Baek, Ju-Yong Kim, Hee-Je Kim, 2017, Imple- mentation of a Single-Phase SST for the Interface between a 13.2 kV MVAC Network and a 750 V Bipolar DC Distribution, Electronics, Vol. 7, No. 5, pp. 62DOI
12 
H. R. Mamede, W. M. dos Santos, D. C. Martins, 2015, A new DC-DC power converter derived from the TAB for bipolar DC microgrids, IEEE Energy Conversion Congress and Exposition, pp. 6217-6222DOI
13 
W. M. dos Santos, T. A. Pereira, C. Knaesel, H. R. Mamede, D. C. Martins, 2014, Modeling and control of the new DC-DC step-up converter to bipolar DC microgrid, IEEE 36th International Telecommunications Energy Conference, pp. 1-8DOI
14 
F. Wang, Z. Lei, X. Xu, X. Shu, June 2017, Topology deduction and analysis of voltage balancers for DC distribution, IEEE Journal of Emerging Selected Topics Power Electronics, Vol. 5, No. 2, pp. 672-680DOI
15 
X. Zhang, C. Gong, August 2013, Dual-buck half-bridge voltage balancer, IEEE Transactions on Industrial Electronics, Vol. 60, No. 8, pp. 3157-3164DOI

μ €μžμ†Œκ°œ

Kisu Kim
../../Resources/kiee/KIEE.2020.69.6.887/au1.png

He received his B.S. degree in Electrical En- gineering and in the School of Energy En- gineering from Kyungpook National University, Daegu, Korea, in 2015 and his M. S. degree in the School of Energy Engineering from Kyungpook National University, Daegu, Korea, in 2017.

He is currently working towards his Ph. D. degree in the School of Energy Engineering, Kyungpook National University, Korea.

His current research interests include magnetic design, high voltage insulated solid-state-transformer, and dual-active- bridge converter.

Honnyong Cha
../../Resources/kiee/KIEE.2020.69.6.887/au2.png

He received his B.S. and M.S. in Electronics Engineering from Kyungpook National University, Daegu, Korea, in 1999 and 2001, respectively, and his Ph.D. in Electrical Engineering from Michigan State University, East Lansing, Michigan, in 2009.

From 2001 to 2003, he was a Research Engineer with the Power System Technology (PSTEK) Company, An-san, Korea.

From 2010 to 2011, he worked as a Senior Researcher at the Korea Electrotechnology Research Institute (KERI), Changwon, Korea.

In 2011, he joined Kyungpook National University as an Assistant Professor in the School of Energy Engineering.

His current research interests include high power dc-dc converters, dc–ac inverters, Z-source inverters, and power conversion for electric vehicles and wind power generation.