• ėŒ€ķ•œģ „źø°ķ•™ķšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ķ•œźµ­ź³¼ķ•™źø°ģˆ ė‹Øģ²“ģ“ģ—°ķ•©ķšŒ
  • ķ•œźµ­ķ•™ģˆ ģ§€ģøģš©ģƒ‰ģø
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Computer Engineering, Kangwon National University, Korea.)
  2. (Electronics and Telecommunications Research Institute, Korea.)
  3. (School of Electrical Engineering, Soonsil University, Korea.)



Electrified railway, Induction Voltage, Predictive Calculation, Magnetic Induction, EMI

1. ģ„œ ė” 

ģ „źø°ģ² ė„ź°€ ģš“ķ–‰ė˜ėŠ” ź·¼ģ²˜ģ§€ģ—­ģ—ėŠ” źøˆģ†ģ„± ķ†µģ‹ ģ„ ģ— ģœ ė„ģ „ģ••ģ“ ģœ źø°ėœė‹¤. ģ“ģ— ė”°ė¼ ģ² ė„ź°€ ź±“ģ„¤ė  ė•ŒėŠ” ģ „ė „ģœ ė„ė”œ ģøķ•œ ķ”¼ķ•“ź°€ ģ—†ė„ė” ėÆøė¦¬ ė°©ģ§€ģ”°ģ¹˜ė„¼ ķ•˜ė„ė” ė²•ģœ¼ė”œ ź·œģ •ķ•˜ź³  ģžˆė‹¤(1). ėŒ€ģƒģ“ ė˜ėŠ” ģœ ė„ģ „ģ••ģ€ ģ“ģƒģ‹œ ģœ ė„ģ „ģ••, ģƒģ‹œ ģœ ė„ģ¢…ģ „ģ••, źø°źø° ģ˜¤ė™ģž‘ ģœ ė„ģ¢…ģ „ģ••, ģœ ė„ģž”ģŒģ „ģ••ģ“ė‹¤. ģœ ė„ģ „ģ••ģ€ Inductive, Capacitive, Resistive Interference ģ˜ķ–„ ėŖØė‘ģ— ėŒ€ķ•“ģ„œ ė°œģƒķ•˜ė‚˜ ėŒ€ģ§€ė„¼ ģ¼ė¶€ź·€ė”œė”œ ķ•˜ėŠ” ģ „źø°ģ² ė„ģ˜ ź²½ģš°ģ—ėŠ” Magnetic Induction ģ— ģ˜ķ•œ ģœ ė„ģ „ģ••ģ“ ģ§€ė°°ģ ģ“ėƀė”œ ģ“ ģš”ģ†Œė§Œ ź³„ģ‚°ķ•˜ź³  ģžˆė‹¤. ģ „ė „ģœ ė„ģ „ģ••ģ„ ź³„ģ‚°ķ•˜ėŠ” ģ§€ģ¹Øź³¼ ģø”ģ •ė°©ė²•ģ€ ź³ ģ‹œ(2),(3) ė° ė‹Øģ²“ķ‘œģ¤€(4)-(11)ģ— ė‚˜ķƒ€ė‚˜ ģžˆė‹¤. ģ „źø°ģ² ė„ ź³„ķ†µģ€ źø‰ģ „ģ„ , ģ „ģ°Øģ„ , ė³“ķ˜øģ„ , ķ‰ķ–‰ ģ ‘ģ§€ģ„  ė“± ė‹¤ģˆ˜ģ˜ ģ „źø°ė„ģ²“ė”œ ģ“ė£Øģ–“ģ ø ģžˆģœ¼ėƀė”œ ė³“ķ†µ ā€˜ė‹¤ė„ģ²“ė²•ģ— ģ˜ķ•œ ģœ ė„ģ „ģ•• ź³„ģ‚° ė°©ė²•ā€™(13)-(15)ģ„ ģ‚¬ģš©ķ•œė‹¤. ģ“ ź³„ģ‚°ģ„ ģœ„ķ•˜ģ—¬ ģ˜ˆģø”ź³„ģ‚°ķ”„ė”œź·øėžØ(17)ģ„ 1993ė…„ė„ģ— ģž‘ģ„±ķ•˜ģ—¬ ģµœź·¼ź¹Œģ§€ ģ‚¬ģš©ķ•“ ģ™”ė‹¤. ģ“ķ›„ ź³ ģ†ģ „źø°ģ² ė„ź°€ źµ¬ģ¶•ėœ ķ˜„ģž„ģ—ģ„œģ˜ ģø”ģ • ė¹„źµź°€ ģˆ˜ģ°Øė”€ ģ“ė£Øģ–“ģ”Œź³ , ģ“ ź³¼ģ •ģ—ģ„œ ģ“ˆźø° ķ”„ė”œź·øėžØ ģ—…ė°ģ“ķŠøģ˜ ķ•„ģš”ģ„±ģ“ ģ ˆģ‹¤ķ•˜ź²Œ ėŒ€ė‘ė˜ģ–“ 2019ė…„ ź³¼ķ•™źø°ģˆ ģ •ė³“ķ†µģ‹ ė¶€ģ˜ ģ£¼ė„ķ•˜ģ— ģ‹ ź·œ ķ”„ė”œź·øėžØ ź°œė°œģ“ ģ“ė£Øģ–“ģ”Œė‹¤(18). ė³ø ė…¼ė¬øģ—ģ„œėŠ” ģ“ˆźø° ķ”„ė”œź·øėžØ ģ„¤ź³„ė³“ź³ ģ„œģ™€ ė¹„źµķ•˜ģ—¬ ė³€ź²½ķ•œ ģ‚¬ķ•­ģ— ėŒ€ķ•œ ķšØź³¼ ź²€ķ† ģ™€ ķ˜„ģž„ ģø”ģ •ģ„ ķ†µķ•œ ź²€ģ¦ ź²°ź³¼ģ— ėŒ€ķ•˜ģ—¬ ė…¼ķ•˜ź³  ģ˜ˆģø”ź³„ģ‚°ģ„ ģˆ˜ķ–‰ķ•˜ėŠ” ė° ķ•„ģš”ķ•œ ģ¤‘ģš” ģˆ˜ģ¹™ģ„ ģ œģ‹œķ•˜ģ˜€ė‹¤.

2. ė³ø ė” 

ź³ ģ‹œģ— ģ˜ķ•“ ģˆ˜ģ¹˜ź°€ ģ œķ•œė˜ėŠ” ģœ ė„ģ „ģ•• ģ¤‘ ź°€ģž„ ģ£¼ėŖ©ģ„ ė°›ėŠ” ź²ƒģ€ ķ†µģ‹  ķ’ˆģ§ˆģ„ ķ›¼ģ†ģ‹œķ‚¤ėŠ” ģ„ ź°„ ģœ ė„ģž”ģŒģ „ģ••ģ“ė‹¤. ģ“ ģœ ė„ģ „ģ••ģ„ ź³„ģ‚°ķ•˜ėŠ” ģˆ˜ģ‹ģ€ ź³ ģ‹œģ— ė‚˜ķƒ€ė‚ø ź²ƒź³¼ ź°™ģ“ ė‹¤ģŒź³¼ ź°™ė‹¤(2).

(1)
$$ V_{n}=\sum_{k}\left\{\left(j \omega_{n} \cdot \frac{A m p K m_{n}}{D}\right) \cdot J_{p} \cdot M_{n} \cdot l \cdot K \cdot \lambda\right\} \times 10^{-3}[m V] $$

$V_{n}$: ģœ ė„ģž”ģŒģ „ģ•• $[m V]$

$\omega_{n}$: $800 Hz$ģ— ėŒ€ķ•œ ź°ģ†ė„ $[rad/\sec]$

$Amp Km_{n}$: ė‹Øź¶Œė³€ģ••źø° źø‰ģ „ė°©ģ‹ģ˜ źµė„˜ģ „ģ²  ģ‹œģ„¤ģ— ģ˜ķ•œ ģœ ė„ģ „ģ••ģ˜ˆģø”źµ¬ź°„ģ—ģ„œģ˜ ģ „ģ°Øģ„  ė“±ź°€ė°©ķ•“ģ „ė„˜ 1[$A$]ģ— ėŒ€ķ•œ ķ‰ź·  źø°ģœ ė„ģ „ė„˜ģ™€ ė‹¹ķ•“źµ¬ź°„ źøøģ“ģ™€ģ˜ ź³±

$D$ : ģœ ė„ģ „ģ•• ģ˜ˆģø” źµ¬ź°„ģ˜ ź±°ė¦¬($km$)

$J_{p}$ : ģ „ģ°Øģ„ ģ˜ ģµœėŒ€ė¶€ķ•˜ģ „ė„˜ģ— ėŒ€ķ•œ ė“±ź°€ė°©ķ•“ģ „ė„˜ $[A]$

$M_{n}$ : 800掐ģ— ėŒ€ķ•œ ģ „ģ°Øģ„ ź³¼ ģ „źø°ķ†µģ‹ ķšŒģ„ ź°„ģ˜ ģƒķ˜øģøė•ķ„“ģŠ¤($\mu H / km$)

$l$ : ģ „ģ°Øģ„ ź³¼ ģ „źø°ķ†µģ‹ ģ„ ź³¼ģ˜ ė³‘ķ–‰ź±°ė¦¬($km$)

$K$ : ź°ģ¢… ģ°Øķź³„ģˆ˜ ģ¤‘ ķ•„ģš”ķ•œ ģ°Øķź³„ģˆ˜ ($K_{3n},\:K_{4},\:K_{6},\:K_{7},\:K_{8}$) ė„¼ ź³±ķ•œ ź°’ ($K_{3n}$: ģ „źø°ķ†µģ‹ ģ„ ģ˜ ģ°Øķź³„ģˆ˜, $K_{3}$: ķ„°ė„ģ˜ ģ°Øķź³„ģˆ˜, $K_{6}$: ź³ ź°€ģ°Øķź³„ģˆ˜, $K_{7}$: ķ†µģ‹ ģ¼€ģ“ėø” ģ”°ģˆ˜ģ— ģ˜ķ•œ ģœ ė„ģ €ź°ź³„ģˆ˜, $K_{8}$: ķƒ€ź¶¤ė„ģ— ģ˜ķ•œ ģ°Øķź³„ģˆ˜)

$k$ : źø°ģœ ė„ģ› ģˆ˜

$\lambda$ : ģ „źø°ķ†µģ‹ ķšŒģ„ ģ˜ ķ‰ķ˜•ė„

ģ“ ģ‹ģ„ ź³„ģ‚°ķ•˜źø° ģœ„ķ•“ģ„œėŠ” ėؼģ € ģ² ė„ź¶¤ė„ ķšŒė”œģ— ģ˜ķ•œ źø°ģœ ė„ģ „ė„˜ė„¼ ź³„ģ‚°ķ•˜ź³ , ģƒķ˜øģøė•ķ„“ģŠ¤ ź°’ģ— ģ˜ķ•œ ģœ ė„ģ „ģ••ģ„ ź³„ģ‚°ķ•œė‹¤. ģ—¬źø°ģ„œ źø°ģœ ė„ģ „ė„˜ģ˜ ģ‹ģ€

(2)
$[I_{n}]=\dfrac{Amp Km_{n}}{D}\cdot J_{p}\times 10^{-3}[m A]$

ė”œ ģ •ģ˜ķ•˜ź³ , ģ“ ź°’ģ— ģ˜ķ•œ ģ„ ź°„ ģž”ģŒ ģ „ģ••ģ‹(1)ģ€ źø°ģœ ė„ģ „ė„˜ģ›ģ“ ķ•˜ė‚˜ģ¼ ė•Œ ė‹¤ģŒź³¼ ź°™ģ“ ė‚˜ķƒ€ė‚øė‹¤.

(3)
$V_{n}= M_{n}\dfrac{d[I_{n}]}{dt}\cdot l\cdot K\cdot\lambda = j\omega_{n}[I_{n}]\cdot l\cdot K\cdot\lambda [m V]$

źø°ģœ ė„ģ „ė„˜ė„¼ ź³„ģ‚°ķ•˜źø° ģœ„ķ•“ģ„œėŠ” ģ „źø°ģ² ė„ģ— ź³µźø‰ė˜ėŠ” ģ „ģ› ė° ģ°Øķģ„ ģ˜ ģˆ˜ź°€ ė§Žźø° ė•Œė¬øģ— ė‹¤ė„ģ²“ė²•ģ„ ģ‚¬ģš©ķ•˜ź³  ģžˆė‹¤. ė‹¤ė„ģ²“ė²•ģ€ ź·øė¦¼ 1ź³¼ ź°™ģ“ ģ—¬ėŸ¬ź°œģ˜ ė„ģ²“ė”œ źµ¬ģ„±ėœ ķšŒė”œė§ģ—ģ„œ ė‹Øģœ„ ģ…€ ķšŒė”œģ‹ģ„ źµ¬ģ„±ķ•˜ģ—¬ ģ“ė„¼ ģ „ģ²“ ķšŒė”œė§ģ— ėŒ€ķ•˜ģ—¬ ģ‹œģŠ¤ķ…œ ė°©ģ •ģ‹ģ„ źµ¬ģ„±ķ•˜ģ—¬ ķ’€ģ“ķ•˜ėŠ” ė°©ė²•ģ“ė‹¤(14).

ź·øė¦¼. 1. ė‹¤ė„ģ²“ ģ„ ė”œ ķšŒė”œė§ģ˜ źµ¬ģ„±ė„ (10)

Fig. 1. diagram of the multi-conductor electric circuit network

../../Resources/kiee/KIEE.2020.69.11.1785/fig1.png

(n-1) ģ„¹ģ…˜ģ—ģ„œģ˜ ź“€ź³„ģˆ˜ģ‹ģ„ ģ“°ė©“,

(4)
$[Z]_{k}[I]_{k}=[V]_{k}-[V]_{k+1}+[F]_{k,\:}(k=1,\: . . . ,\: n-1)$

ģ—¬źø°ģ„œ, $[Z]_{k}$ģ˜ ėŒ€ź°ģ„  ģ„±ė¶„ģ€ k ģ„¹ģ…˜ģ˜ i-ė²ˆ ė„ģ²“ģ˜ ģžźø° ģž„ķ”¼ė˜ģŠ¤, $[Z]_{k}$ģ˜ ė¹„ ėŒ€ź°ģ„  ģ„±ė¶„ģ€ k ģ„¹ģ…˜ģ˜ i-ė²ˆ ė„ģ²“ģ˜ j-ė²ˆ ė„ģ²“ź°„ģ˜ ģƒķ˜ø ģž„ķ”¼ė˜ģŠ¤, $[I]_{k},\:[V]_{k}$ėŠ” k ģ„¹ģ…˜ģ˜ ģ „ė„˜ ė° ģ „ģ•• m X 1 ė²”ķ„° $[F]_{k}$ėŠ” k ģ§€ģ ģ— ź³µźø‰ė˜ėŠ” ģ „ģ••ź³¼ ģœ ė„ė˜ėŠ” ģ¢…ģø” emf ė²”ķ„° ģ“ė‹¤.

ź·øė¦¼. 2. i-ė²ˆģ§ø ė„ģ²“, kė²ˆģ§ø ģ…€ģ˜ ģ „źø°ė§¤ź°œ ė³€ģˆ˜

Fig. 2. The electric parameters appearing in the k-th cell of the i-th loop

../../Resources/kiee/KIEE.2020.69.11.1785/fig2.png

n ģ§€ģ ģ—ģ„œģ˜ ź“€ź³„ģ‹ģ€

(5)
$$ \begin{array}{l} {[Y]_{1}[V]_{1}=-[I]_{1}+[J]_{1}} \\ {[Y]_{k}[V]_{k}=-[I]_{k-1}+[J]_{k} \quad(k=2, \ldots, n-1)} \\ {[Y]_{n}[V]_{n}=-[I]_{n-1}+[J]_{n}} \end{array} $$

ģ—¬źø°ģ„œ, $[Y]_{k}$ģ˜ ėŒ€ź°ģ„  ģ„±ė¶„ģ€ k ģ„¹ģ…˜ģ˜ i-ė²ˆ ė„ģ²“ģ˜ ģžźø° ģ–“ė“œėÆøķ„“ģŠ¤ ź³„ģˆ˜, $[Y]_{k}$ģ˜ ė¹„ ėŒ€ź°ģ„  ģ„±ė¶„ģ€ k ģ„¹ģ…˜ģ˜ i-ė²ˆ ė„ģ²“ģ˜ j-ė²ˆ ė„ģ²“ź°„ģ˜ ģƒķ˜ø ģ–“ė“œėÆøķ„“ģŠ¤ ź³„ģˆ˜, $[J]_{k}$ėŠ” kģ§€ģ ģ— ģ£¼ģž…ė˜ėŠ” ģ „ė„˜ģ™€ ģœ ė„ė˜ėŠ” ķš”ģø” ģ „ė„˜ģ“ė‹¤.

ģ „ģ²“ ģ‹œģŠ¤ķ…œģ— ėŒ€ķ•˜ģ—¬ ģ‹œģŠ¤ķ…œ ė°©ģ •ģ‹ģ„ źµ¬ģ„±ķ•˜ė©“,

(6)
$$[D]_{k}[V]_{k-1}+[M]_{k}[V]_{k}+[H]_{k}[V]_{k+1}=[T]_{k}$$ ģ—¬źø°ģ„œ, $[D]_{k}= -[Z]_{k-1}^{-1}$ $$[M]_{k}= -[Y]_{k}+[Z]_{k-1}^{-1}+[Z]_{k}^{-1}$$ $$[H]_{k}= -[Z]_{k}^{-1}$$ $$[T]_{k}=[J]_{k}+[Z]_{k-1}^{-1}[F]_{k-1}-[Z]_{k}^{-1}[F]_{k}$$

ģ“ ė˜ź³  źø°ģœ ė„ģ „ė„˜ģ› ź°’ģ€

(7)
$$[I]_{k}=[Z]_{k}^{-1}\left[[V]_{k}-[V]_{k+1}+[F]_{k}\right]$$ $$[I]_{k-1}=[Z]_{k-1}^{-1}\left[[V]_{k-1}-[V]_{k}+[F]_{k-1}\right]$$

ģœ¼ė”œ źµ¬ķ•  ģˆ˜ ģžˆė‹¤.

źø°ģ”“ ķ”„ė”œź·øėžØģœ¼ė”œ ź³„ģ‚°ėœ ģœ ė„ģ „ģ••ģ„ ģø”ģ •ģ¹˜ģ™€ ė¹„źµķ•Øģ— ģžˆģ–“ģ„œ ģ œźø°ėœ ė¬øģ œģ ģ€ ģ˜ˆģø”ź³„ģ‚°ģ¹˜ź°€ ģø”ģ •ģ¹˜ģ— ė¹„ķ•“ ė„ˆė¬“ ź³¼ė„ķ•˜ź²Œ ė†’ź²Œ ė‚˜ģ˜Øė‹¤ėŠ” ģ ģ“ė‹¤. ģ˜ˆģø”ź³„ģ‚°ģ˜ ėŖ©ģ ģ€ ģ² ė„ģš“ķ–‰ģ—ģ„œ ė‚˜ģ˜¬ ģˆ˜ ģžˆėŠ” ģµœģ•… ģ”°ź±“ģ—ģ„œģ˜ ģµœėŒ€ģ¹˜ė„¼ ģ°¾ėŠ” ź²ƒģ“ėƀė”œ ė‹¹ģ—°ķžˆ ģž„ģ˜ģ˜ ģ§§ģ€ źø°ź°„ģ— ģø”ģ •ķ•œ ģˆ˜ģ¹˜ ė³“ė‹¤ ė†’ź²Œ ė‚˜ģ™€ģ•¼ ķ•œė‹¤. ķ•˜ģ§€ė§Œ ģ¼ė¶€ źµ¬ź°„ģ—ģ„œėŠ” ģ˜ˆģƒķ•  ģˆ˜ ģžˆėŠ” ź°’ė³“ė‹¤ ė„ˆė¬“ ź³¼ė„ķ•œ ģˆ˜ģ¹˜ė„¼ ė‚˜ķƒ€ė‚“ėƀė”œ ė³ø ģ—°źµ¬ģ—ģ„œėŠ” ģ“ė„¼ ź°œģ„ ķ•  ģ‚¬ķ•­ģ„ ģ°¾źø° ģœ„ķ•“ źø°ģ“ˆģ“ė” ģ‹ ģ ģš©ė¶€ķ„° ģ „źø°ģ² ė„ źø°ģˆ ė°œģ „ģ— ė”°ė„ø ė³€ķ™”, ģž…ė „ė°ģ“ķ„° ģž‘ģ„±ė°©ė²•ź¹Œģ§€ģ˜ ģ”°ģ‚¬ė„¼ ģˆ˜ķ–‰ķ•˜ģ˜€ė‹¤. ź·ø ź²°ź³¼, ķ”„ė”œź·øėžØ źµ¬ģ„±ģƒģ—ģ„œģ˜ ź°œģ„ ģ ģ€ ė‹¤ģŒź³¼ ź°™ģ“ ģ •ė¦¬ķ•  ģˆ˜ ģžˆģ—ˆė‹¤.

2.1. ķ”„ė”œź·øėžØ ź°œģ„  ķšØź³¼ ź²€ķ† 

2.1.1. ė‹¤ė„ģ²“ė²• ź³„ģ‚°ģ—ģ„œģ˜ ź³„ģƒ ė„ģ²“ ģˆ˜ ź²€ķ† 

ģœ ė„ģ „ģ••ģ„ ė°œģƒķ•˜ėŠ” źø°ģœ ė„ģ „ė„˜ģ›ģ„ ź³„ģ‚°ķ•˜ėŠ” ė°©ė²•ģ—ģ„œ 1993ė…„ė„ ģ„¤ź³„ė³“ź³ ģ„œ(17)ģ— ė”°ė„“ė©“ ā€˜ģµœėŒ€ 12ė„ģ²“ė„¼ ģ‚¬ģš©ķ•˜ė„ė” ķ•˜ź³  ģ“ ģˆ˜ė„¼ ė„˜ėŠ” ź²½ģš°ģ—ėŠ” ķ•©ģ„±ė°©ė²•ģœ¼ė”œ ģ‚°ģ¶œķ•œė‹¤.ā€˜ ė¼ź³  źø°ģˆ ķ•˜ź³  ģžˆė‹¤. ź·øėŸ¬ė‚˜ ķ˜„ķ–‰ ź³ ģ†ģ „źø°ģ² ė„ėŠ” ź·øė¦¼ 3ģ—ģ„œ ė³“ėŠ” ė°”ģ™€ ź°™ģ“ ģžźø°ģœ ė„ģ— ģ˜ķ–„ģ„ ģ£¼ėŠ” ķ‰ķ–‰ ģ„ ė”œź°€ ķ† ź³µė³µģ„  źø°ģ¤€ 15ź°œ ģ”“ģž¬ķ•˜ė©°, ķ„°ė„źµ¬ź°„ģ“ ģµœėŒ€ 16ė„ģ²“, ź³ ź°€źµ¬ģ”°ė¬¼ģ—ģ„œ ź³ ģ†ģ „ģ² ģø ź²½ģš° 15ź°œģ˜ ė„ģ²“ź°€ ģ„¤ģ¹˜ėœė‹¤.

źø°ģ”“ ķ”„ė”œź·øėžØģ€ ķŠøėž™ė‹¹ ā€™ģ „ģ°Øģ„ , źø‰ģ „ģ„ , ė ˆģ¼, ģ „ģ°Øģ°Øķģ„ , ģ§€ģ¤‘ģ§€ģ„ , ė³“ģ”°źø‰ģ „ģ„  6ė„ģ²“ė”œ ė³µģ„  12ė„ģ²“ė„¼ źµ¬ģ„±ķ•˜ģ˜€ė‹¤ā€˜ź³  ė˜ģ–“ ģžˆėŠ”ė°, ATźø°ė°˜ ģ² ė„ģ˜ ķ•“ģ„ģ— ģ‚¬ģš©ķ•˜ģ§€ ģ•ŠėŠ” ė³“ģ”°źø‰ģ „ģ„ ģ„ ķ¬ķ•Øķ•˜ģ˜€źø° ė•Œė¬øģ— ģ‹¤ģ œ ķ•“ģ„ė³€ģˆ˜ģ˜ ģˆ˜ź°€ ėŖØģžė¼ė‹¤. ź·øėŸ¬ėƀė”œ GMR(Geometrical Mean Radius), GMD (Geometrical Mean Distance)(13) ė°©ė²•ģ„ ģ‚¬ģš©ķ•˜ģ—¬ ģ”°ź°€ģ„ ź³¼ ģ „ģ°Øģ„ , ė ˆģ¼ 1ģŒ ė° ģ ‘ģ§€ź³„ķ†µģ„  3ģ”°ė„¼ ė¬¶ģ–“ 1ģ„ ģ”©ģœ¼ė”œ Dataė„¼ ģž‘ģ„±ķ•˜ź³  ģœ ė„ź³„ģ‚°ģ‹ģ„ Carson-Clem(13) ź·¼ģ‚¬ģ‹ģ„ ģ ģš©ķ•˜ģ—¬ ź³„ģ‚°ķ•˜ģ˜€ė‹¤.

ź·øė¦¼. 3. ź³ ģ†ģ „źø°ģ² ė„ ģ¢…ķ–‰ ģ „źø°ė„ģ²“ ė°°ģ¹˜ (ķ† ź³µźµ¬ź°„)

Fig. 3. Disposition of Parallel Conductors in Open Earth High-Speed Electrified Railway

../../Resources/kiee/KIEE.2020.69.11.1785/fig3.png

ģ“ ź²½ģš° ė¹„źµģ  ź°„ź²©ģ“ ģž‘ģ€ ė ˆģ¼ģŒ ģ”°ķ•©ģ“ė‚˜ ģ €ķ•­ģ“ ė¹„źµģ  ė†’ģ€ ģ”°ź°€ģ„ ģ„ ģ „ģ°Øģ„ ź³¼ ķ•©ģ„±ķ•˜ėŠ” ė°ģ—ģ„œėŠ” ģš°ė ¤ķ•˜ėŠ” ģ •ė„ģ˜ ģ˜¤ģ°Øź°€ ė°œģƒķ•˜ģ§€ ģ•Šģ„ ģˆ˜ ģžˆģœ¼ė‚˜, ģ ˆģ—°ģ ‘ģ§€ģ„  2ź°œģ™€ ė§¤ģ„¤ģ ‘ģ§€ģ„ ģ„ ķ•˜ė‚˜ģ˜ ė„ģ²“ė”œ ź°„ģ£¼ķ•˜ėŠ” ė°ėŠ” ź±°ė¦¬ź°€ ė©€ģ–“ ķ° ė¬“ė¦¬ź°€ ė”°ė„øė‹¤ (ź·øė¦¼ 3 [GMR-5]). ė˜ķ•œ, GMDėŠ” ģƒź“€ ė„ģ„  ģœ„ģ¹˜ė³„ė”œ ėŖØė‘ ź°ź° ź³„ģ‚°ķ•˜ģ—¬ģ•¼ ķ•˜ėŠ”ė°, ģ“ ź³„ģ‚°ģ€ ė°ģ“ķ„°ė„¼ ģž‘ģ„±ķ•˜ėŠ” ģ‚¬ģš©ģžź°€ ķ•˜ė„ė” ė˜ģ–“ ģžˆģ–“ ģ œėŒ€ė”œ ģ ģš©ģ“ ģ•ˆ ėœ ź²½ģš°ź°€ ģžˆģ—ˆė‹¤.

2.1.1.1 GMR, GMD ģ ģš© ģ ģ •ģ„± ź²€ķ† 

GMR($r_{g}'$), GMD($d'_{MN}$ ) ė°©ė²•ģ€ źµ°ģ§‘ķ•˜ėŠ” ģ—¬ėŸ¬ ź°œģ˜ ė„ģ²“ė„¼ ķ•˜ė‚˜ģ˜ ė„ģ²“ė”œ ė“±ź°€ķ™” ķ•˜ģ—¬ ģ ģš©ķ•˜ėŠ” ė°©ė²•ģ“ė‹¤(13).

(8)
$$r_{g}^{'}=\sqrt[n^{2}]{(r_{1}^{'}d_{12}d_{13}\cdots d_{1n})(d_{21}r_{2}^{'}d_{23}\cdots d_{2n})\cdots(d_{n1}d_{n2}\cdots r_{n}^{'})}$$ $$d_{MN}^{'}=\sqrt[mn]{(d_{m1,\:n1}d_{m1,\:n2}\cdots d_{m1,\:nn})(d_{m2,\:n1}\cdots d_{m2,\:nn})\cdots(d_{mm,\:n1}\cdots d_{mm,\:nn})}$$

ģ—¬źø°ģ„œ $r_{i}'$ : iė²ˆ ė„ģ²“ģ˜ ė°˜ģ§€ė¦„

$d_{ij}$ : iė²ˆ ė„ģ²“ģ™€ jė²ˆ ė„ģ²“ ģ‚¬ģ“ ź±°ė¦¬

ź·øėŸ¬ė‚˜ ģ“ ģ‹ģ€ źµ°ģ§‘ķ™” ķ•˜ėŠ” ė„ģ²“źµ°ģ˜ ģ“ ģ „ė„˜ ķ•©ģ“ 0ģø ź²½ģš°ė„¼ ź°€ģ •ķ•˜ģ—¬ ģœ ė„ķ•œ ģˆ˜ģ‹ģ“ėƀė”œ ķ˜„ ė¬øģ œģ— ģ ģš©ķ•˜źø° ģ ė‹¹ģ¹˜ ģ•Šė‹¤. ź·øė¦¼ 4ģ— ė‚˜ķƒ€ė‚ø 2ź°œģ˜ ģ°Øķģ„ ģ„ ź³ ė ¤ķ•œ ź³„ģ‚° ģ˜ˆģ—ģ„œ ė³“ė©“, ź·øė¦¼ 5ģ²˜ėŸ¼ ź±°ė¦¬ź°€ ź°€ź¹Œģšøģˆ˜ė” ķ° ģ˜¤ģ°Øė„¼ ė‚˜ķƒ€ė‚øė‹¤.

ź·øė¦¼. 4. ė‘ ģ°Øķģ„ ģ„ ķ•˜ė‚˜ģ˜ ė“±ź°€ė„ģ²“ė”œ ķ•˜ėŠ” ź²½ģš°ģ˜ ģœ„ģ¹˜ė„

Fig. 4. Diagram of 2 shield lines & the equivalent GMD line

../../Resources/kiee/KIEE.2020.69.11.1785/fig4.png

ź·øė¦¼. 5. ė‘ź°œģ˜ ė„ģ„ ģ„ ķ•˜ė‚˜ģ˜ ė„ģ²“ė”œ ģ ģš©ķ–ˆģ„ ė•Œģ˜ ģ°Øķź³„ģˆ˜ ģ˜¤ģ°Ø

Fig. 5. The Error of GMR/GMD Apply in 2 wire case

../../Resources/kiee/KIEE.2020.69.11.1785/fig5.png

ź·øėŸ¬ėƀė”œ GMR/GMD ė°©ė²•ģ„ ģ‚¬ģš©ķ•˜ģ—¬ ģ‹œģŠ¤ķ…œ ė³€ģˆ˜ė„¼ ģ¤„ģ“ėŠ” ź²ƒģ€ ģ˜¤ģ°Øė„¼ ė‚˜ķƒ€ė‚“ź²Œ ėœė‹¤. ė³ø ģ—°źµ¬ģ—ģ„œėŠ” ėŖØė“  ķ‰ķ–‰ė„ģ²“ė„¼ ė…ė¦½ģ ģø ģ„ ė”œė”œ ź°„ģ£¼ķ•˜ģ—¬ ģ‹œģŠ¤ķ…œ ė°©ģ •ģ‹ģ„ źµ¬ģ„±ķ•˜ź³  ģ“ė„¼ źø°ģ”“ ķ”„ė”œź·øėžØ ź²°ź³¼ģ™€ ė¹„źµķ•˜ģ˜€ė‹¤. ź³„ģ‚°ź²°ź³¼ ė¹„źµėŠ” 2015ė…„ ģ „ė „ģœ ė„ģ „ģ•• ź³µė™ģ—°źµ¬ķ˜‘ģ˜ģ²“ģ—ģ„œ ģˆ˜ķ–‰ķ•œ ģ—°źµ¬ė³“ź³ ģ„œ(19)ģ— źø°ģ”“ ķ”„ė”œź·øėžØģ— ģ˜ķ•œ ģœ ė„ģ „ģ•• ģ˜ˆģø”ģ¹˜ ź³„ģ‚° ź²°ź³¼ź°€ ė‚˜ģ™€ ģžˆģœ¼ėƀė”œ ģ“ģ™€ ė™ģ¼ ģž…ė „ė°ģ“ķ„°ė„¼ ģ‚¬ģš©ķ•˜ģ—¬ ė¹„źµķ•˜ģ˜€ė‹¤. ķ˜„ģž¬ ź°€ģž„ ė¬øģ œź°€ ė˜ź³  ģžˆėŠ” ėŒ€ģƒģ€ ģ„ ź°„ģž”ģŒģ „ģ•• ģ œķ•œģøė°, ģ“ ź°’ģ€ ģ‹(1)ģ—ģ„œ ģ•„ėž˜ģ™€ ź°™ģ“ ģ •ģ˜ė˜ėŠ” ģ„ ėŒ€ģ§€ ģž”ģŒģ „ģ••ź³¼ ģ„ ė”œ ģž”ģŒķ‰ķ˜•ė„ģ˜ ź³±ģœ¼ė”œ ė‚˜ķƒ€ė‚œė‹¤.

(9)
$$ V_{n}=[P I F] \cdot \lambda, $$ where $[P I F]$ $$ =\sum_{k}\left\{j \omega_{n} \cdot \frac{A m p K m_{n}}{D} \cdot J_{p} \cdot M_{n} \cdot l \cdot K \times 10^{-3}\right\}[m V] $$

* $PIF$ : ģ„ ėŒ€ģ§€ģž”ģŒģ „ģ••(Power InFluence)

ģž”ģŒķ‰ķ˜•ė„ėŠ” ģ„¤ģ¹˜ėœ ģ„ ė”œģ˜ ģ”°ź±“ģ„ ė§žģ¶”źø° ģœ„ķ•“ ģ‹¤ģø”ģœ¼ė”œ źµ¬ķ•˜ėŠ” ź°’ģ“ģ§€ė§Œ, ģ˜ˆģø”ź³„ģ‚°ģ—ģ„œėŠ” ź³ ģ‹œģ—ģ„œ ģ •ķ•˜ėŠ” ģƒģˆ˜ ź°’ģ„ ģ‚¬ģš©ķ•˜ė„ė” ė˜ģ–“ ģžˆė‹¤. ź·øėŸ¬ėƀė”œ ė¬¼ė¦¬ģ ģø ķ˜„ģƒģ„ ģ •ķ™•ķžˆ ė¹„źµķ•˜źø° ģœ„ķ•“ģ„œėŠ” ģœ„ģ˜ ģ„ ėŒ€ģ§€ģž”ģŒģ „ģ••ģ„ ė¹„źµķ•˜ėŠ” ź²ƒģ“ ģ ķ•©ķ•˜ė‹¤.

ķ‘œ 1. 1ģ°Ø ź°œģ„  ė¹„źµ ź²°ź³¼ (ź²½ź°ģœØ)

Table 1. Comparison of Results at 1st reformation

No.

Area

Comm.

Office

Comm. Line ID

PIF Calculated [mV]

Reducing Ratio (%)

Previous

Program

1. Wire Addition

1

Chungbuk

Gagyung Taesung

0302-101-044

2,210

1,406

63.6

2

Chungnam

Sejong Bookang

0302-102-009

1.650

928

56.2

3

0302-102-030

2,450

1,445

59.0

4

Chunbuk

Iksan Mangsung

0306-106-033

1,380

865

62.7

5

0306-106-042

1,450

914

63.0

6

Chunnam

KwangJu Im-Gok

0310-122-015

610

291

47.7

7

0310-122-023

760

434

57.1

8

Dae-

gu

KyungJu Hyun-Gok

1101-101-012

2,160

1,811

83.8

9

1101-101-016

1,820

1,074

59.0

10

Ankang Kangdong

1101-101-064

2,350

2,156

91.7

11

Angang Sabang

1101-101-025

2,170

2,218

102.2

Avr%

67.8

ź³„ģ‚° ź²°ź³¼ėŠ” ķ‘œ 1ź³¼ ź°™ģœ¼ė©° ģ „ģ²“ģ ģœ¼ė”œ ķ‰ź·  67.8%ģ˜ ź²½ź°ģœØģ„ ė‚˜ķƒ€ė‚“ģ—ˆė‹¤.

2.1.2. ė„ģ„  ģœ„ģ¹˜ė³„ ģˆ˜ģ‹ ģ ģš©

ė‹¤ė„ģ²“ė²•ģœ¼ė”œ ģœ ė„ģ „ģ••ģ„ ź³„ģ‚°ķ•˜źø° ģœ„ķ•œ ģˆ˜ģ‹ģ€ ģ„ ė”œģ˜ ģžźø°ģž„ķ”¼ė˜ģŠ¤ ė° ģƒķ˜øģž„ķ”¼ė˜ģŠ¤ ź³„ģ‚°ģ‹ģ„ ģ‚¬ģš©ķ•œė‹¤. ģ—¬źø°ģ„œ ģžźø°ģž„ķ”¼ė˜ģŠ¤ ź°’ģ€ ģ„ ė”œģ˜ ģœ„ģ¹˜ģ— ė”°ė¼ ź³µģ¤‘, ģ§€ģ¤‘, ź³µģ¤‘ėŒ€ģ§€ź²½ź³„ė”œ ė‚˜ė‰˜ģ–“ ź³„ģ‚°ė˜ź³ , ģƒķ˜øģž„ķ”¼ė˜ģŠ¤ģ˜ ź²½ģš°ėŠ” ė‘ź°œģ˜ ģ„ ė”œģ— ėŒ€ķ•“ ģ“ ģ„ø ź°€ģ§€ ģœ„ģ¹˜ģ˜ ģ”°ķ•©ģœ¼ė”œ ģ“ 6ź°œģ˜ ź²½ģš°ź°€ ė°œģƒķ•œė‹¤(14).

2.1.2.1. ģ„ ė”œ ģœ„ģ¹˜ė³„ ģžźø°ģž„ķ”¼ė˜ģŠ¤

ģžźø°ģž„ķ”¼ė˜ģŠ¤ ź³„ģ‚°ģ„ ģœ„ķ•œ ģ„ ė”œģ˜ ģœ„ģ¹˜ źµ¬ė¶„ģ€ ź·øė¦¼ 6ź³¼ ź°™ė‹¤. ź° ź²½ģš°ģ˜ ģžźø°ģž„ķ”¼ė˜ģŠ¤ ź³„ģ‚°ģ‹ģ€ (14)ģ— ė”°ė„“ė©“, ė‹¤ģŒź³¼ ź°™ė‹¤.

ź·øė¦¼. 6. ģ„ ė”œ ģœ„ģ¹˜ģ— ė”°ė„ø ė¶„ė„˜ (14)

Fig. 6. The Geometry of 3 case conductors

../../Resources/kiee/KIEE.2020.69.11.1785/fig6.png

āž€ ėŒ€ģ§€ģ— ėŒ€ķ•“ ź³µģ¤‘ģ— ģžˆėŠ” ģ„ ė”œģ˜ ģžźø° ģž„ķ”¼ė˜ģŠ¤

(10)
\begin{align*} Z_{ii}\approx Z_{i}^{e/e}+\dfrac{j\omega\mu_{0}}{2\pi}[\ln\dfrac{1.851}{j k_{2}a_{i}}+\dfrac{4}{3}+ j k_{2}x_{i}] \\ \approx Z_{i}^{e/e}+\dfrac{j\omega\mu_{0}}{2\pi}\ln\left(\dfrac{2x_{i}+\dfrac{2}{jk_{2}}}{a_{i}}\right)[Ohm/km] \end{align*} $\approx Z_{i}^{e/e}+\dfrac{j\omega\mu_{0}}{2\pi}\ln\left(\dfrac{2x_{i}+\dfrac{2}{jk_{2}}}{a_{i}}\right)[Ohm/km]$

(11)
ģ—¬źø°ģ„œ, ģ €ķ•­ $Z_{i}^{e/e}= \rho\dfrac{_{s}}{\pi r_{s}^{2}}= R_{s} \quad\quad for solid conductor$,

$a_{i}:$ ė„ģ²“ ė°˜ź²½ $[m],$

$x_{i}:$ ėŒ€ģ§€ź²½ ź³„ė©“ź³¼ģ˜ ģˆ˜ģ§ź±°ė¦¬ $[m]$

$k_{2}=\sqrt{-\frac{j \omega \mu_{0}}{\rho}}, \quad\left[m^{-1}\right] \quad \rho:$ ė§¤ģ§ˆģ˜ $\quad$ ģ €ķ•­ģœØ $[\Omega \cdot m]$

āž ź³µźø°-ėŒ€ģ§€ ź²½ź³„ė©“ģ— ģžˆėŠ” ģ ˆģ—° ģ„ ė”œģ˜ ģžźø° ģž„ķ”¼ė˜ģŠ¤

(12)
\begin{align*} Z_{ii}=Z_{i}^{e/e}+\dfrac{-j\omega\mu_{0}}{\pi b_{i}k_{2}^{2}}\left[\dfrac{1}{b_{i}}-jk_{2}K_{1}(jk_{2}b_{i})\right]\\ \approx Z_{i}^{e/e}+\dfrac{j\omega\mu_{0}}{2\pi}\ln\dfrac{1.851}{jk_{2}b_{i}} \end{align*}

ģ—¬źø°ģ„œ, $b_{i}$ėŠ” ģ ˆģ—°ģ„ ģø ź²½ģš° ķ”¼ė³µź¹Œģ§€ė„¼ ź³ ė ¤ķ•œ ģ„ ė”œ ė°˜ź²½ [m]ģ“ė‹¤.

āž‚ ģ§€ģ¤‘ģ— ģžˆėŠ” ė‚˜ģ„  ģ„ ė”œģ˜ ģžźø° ģž„ķ”¼ė˜ģŠ¤

(13)
$Z_{ii}\approx Z_{i}^{e/e}+\dfrac{j\omega\mu_{0}}{2\pi}\ln\dfrac{1.851}{j k_{2}\sqrt{a_{i}^{2}+4x_{i}^{2}}}$

ėŒ€ģ§€ź³ ģœ ģ €ķ•­ģœØģ— ė”°ė„ø ź³„ģ‚°ģ¹˜ģ˜ ź·øėž˜ķ”„ėŠ” ź·øė¦¼ 7ź³¼ ź°™ė‹¤. ģ—¬źø°ģ„œ ģ£¼ėŖ©ķ•“ģ•¼ ķ•  ģ‚¬ķ•­ģ€ ź³„ģ‚° ė¹„źµ ź·øėž˜ķ”„ģ—ģ„œ ė³“ė“Æģ“ ģžźø°ģž„ķ”¼ė˜ģŠ¤ ź°’ģ€ ė„ģ„ ģ˜ ģœ„ģ¹˜ģ— ėŒ€ķ•˜ģ—¬ ķ° ģ°Øģ“ė„¼ ė‚˜ķƒ€ė‚øė‹¤. ź·øėŸ¬ėƀė”œ ģžźø°ģž„ķ”¼ė˜ģŠ¤ ź³„ģ‚°ģ€ ģœ„ 3ź°€ģ§€ ź²½ģš°ė„¼ ķ•„ģˆ˜ģ ģœ¼ė”œ źµ¬ė¶„ķ•˜ģ—¬ ģ ģš©ķ•˜ģ—¬ģ•¼ ķ•œė‹¤.

ź·øė¦¼. 7. ėŒ€ģ§€ź·€ė”œ ė„ģ„ ģ˜ ģžźø° ģøė•ķ„“ģŠ¤ ź°’

Fig. 7. Self Inductance Values of 3 case lines

../../Resources/kiee/KIEE.2020.69.11.1785/fig7.png

2.1.2.2. ģ„ ė”œ ģœ„ģ¹˜ė³„ ģƒķ˜ø ģž„ķ”¼ė˜ģŠ¤

ź·øė¦¼. 8. ė„ģ²“ ģƒķ˜øģœ„ģ¹˜ģ— ė”°ė„ø ė¶„ė„˜ (14)

Fig. 8. Geometry of the wires for the evaluation of the mutual parameters

../../Resources/kiee/KIEE.2020.69.11.1785/fig8.png

āž€ ė‘ ė„ģ„  ėŖØė‘ ź³µģ¤‘ģ— ģžˆėŠ” ź²½ģš°

(14)
$Z_{ij}=\dfrac{j\omega\mu_{0}}{2\pi}\ln\dfrac{R_{ij}'}{R_{ij}}+2\int_{0}^{\infty}\dfrac{e^{-\lambda(x_{i}+x_{j})}\cos\lambda(y_{i}-y_{j})}{\lambda +\sqrt{\lambda^{2}-k_{2}^{2}}}d\lambda$,

ģ—¬źø°ģ„œ, $R_{ij}=\sqrt{(x_{i}- x_{j})^{2}+(y_{i}- y_{j})^{2}}$

$R_{ij}'=\sqrt{(x_{i}+ x_{j})^{2}+(y_{i}- y_{j})^{2}}$ [m]

$(x_{i},\: y_{i}),\:(x_{j},\: y_{j})$ : ź·øė¦¼ 8ģ— ķ‘œźø°ķ•œ ģ„ ė”œģ˜ ģ¢Œķ‘œ

ģ‹(14)ė„¼ Bessel ķ•Øģˆ˜ģ— ģ˜ķ•œ źø‰ģˆ˜ė”œ ķ‘œķ˜„ķ•˜ė©“ ģž˜ ģ•Œė ¤ģ§„ Carson Seriesź°€ ėœė‹¤. ģ“ źø‰ģˆ˜ģ—ģ„œ 2ģ°Ø ź³ ģ”°ķ•­ ģ“ģƒģ„ ė¬“ģ‹œķ•œ ź·¼ģ‚¬ģ‹ģ“ ė³µģ†Œģ˜ģƒė²• ģˆ˜ģ‹ģ“ ėœė‹¤.

(15)
\begin{array}{l} Z_{i j} \approx \frac{j \omega \mu_{0}}{2 \pi} \ln \frac{\overline{R_{i j}}}{R_{i j}} \\ \text { where } \overline{R_{i j}}=\sqrt{\left(x_{i}+x_{j}+\frac{2}{j k_{2}}\right)^{2}}+\left(y_{i}-y_{j}\right)^{2} \end{array}

āž ė‘ ė„ģ„  ėŖØė‘ ź³µģ¤‘-ėŒ€ģ§€ ź²½ź³„ė©“ģ— ģžˆėŠ” ź²½ģš°

(16)
$Z_{ij}\approx\dfrac{j\omega\mu_{0}}{2\pi}\ln\dfrac{1.851}{|y_{i}- y_{j}| j k_{2}}$

āž‚ ė‘ ė„ģ„  ėŖØė‘ ģ§€ģ¤‘ģ— ģžˆėŠ” ź²½ģš°

(17)
$Z_{ij}\approx\dfrac{j\omega\mu_{0}}{2\pi}\ln\dfrac{1.851}{R_{ij}j k_{2}}$

āžƒ ķ•˜ė‚˜ģ˜ ė„ģ„ ģ€ ź³µģ¤‘ģ— ė‹¤ė„ø ė„ģ„ ģ€ ģ§€ģ¤‘ģ— ģžˆėŠ” ź²½ģš°

(18)
$Z_{ij}\approx\dfrac{j\omega\mu_{o}}{2\pi}\left[\ln\dfrac{1.8511}{j k_{2}R_{ij}}+\dfrac{2}{3}j k_{2}(x_{i}+ x_{j})\right]$

āž„ ķ•˜ė‚˜ģ˜ ė„ģ„ ģ€ ź³µģ¤‘ģ— ė‹¤ė„ø ė„ģ„ ģ€ ź³µźø°-ėŒ€ģ§€ ź²½ź³„ģ— ģžˆėŠ” ź²½ģš°

(19)
$Z_{ij}\approx\dfrac{j\omega\mu_{o}}{2\pi}\left[\ln\dfrac{1.8511}{j k_{2}R_{ij}}+\dfrac{2}{3}j k_{2}x_{j}\right]$

āž… ķ•˜ė‚˜ģ˜ ė„ģ„ ģ€ ź³µźø°-ėŒ€ģ§€ ź²½ź³„ģ— ė‹¤ė„ø ė„ģ„ ģ€ ģ§€ģ¤‘ģ— ģžˆėŠ” ź²½ģš°

(20)
$$Z_{ij}=\dfrac{-j\omega\mu_{0}}{2\pi} \cdot 2\int_{0}^{\infty}\dfrac{e^{\sqrt{\lambda^{2}-k_{2}^{2}}x_{j}}\cos\lambda(y_{i}-y_{j})}{\lambda +\sqrt{\lambda^{2}-k_{2}^{2}}}d\lambda $$ $$\approx\dfrac{j\omega\mu_{0}}{2\pi}\ln\dfrac{1.851}{R_{ij}j k_{2}}$$

ģƒķ˜øģž„ķ”¼ė˜ģŠ¤ģ˜ ź²½ģš°ėŠ”, ė„ģ„ ģ˜ ģƒķ˜ø ģœ„ģ¹˜ģ— ė”°ė¼ ģ•½ź°„ģ˜ ģ°Øģ“ė„¼ ė³“ģ“ė‚˜(ź·øė¦¼ 9), ė„ģ„ ź°„ģ˜ ź±°ė¦¬ź°€ ė©€ģ–“ģ§ˆģˆ˜ė” ź·ø ģ˜ķ–„ģ“ ģ¤„ģ–“ė“ ė‹¤(ź·øė¦¼ 10). ė˜ķ•œ, źø°ģœ ė„ģ› ė„ģ„ ģ“ ź³µźø° ģ¤‘ģ— ģœ„ģ¹˜ķ•˜ėŠ” ė°”, ė¹„źµėŒ€ģƒģ—ģ„œ ģƒėŒ€ ė„ģ„ ģ“ ģ§€ķ‘œģ— ģžˆėŠ” ź²½ģš°ė„¼ ģ œģ™øķ•˜ź³ ėŠ” ź³„ģ‚° ķŽøģ°Øź°€ ģ ģ€ ķŽøģ“ė‹¤.

ź·øė¦¼. 9. ź·¼ģ ‘ź±°ė¦¬ ė„ģ„ ģ˜ ģœ„ģ¹˜ė³„ ģƒķ˜øģž„ķ”¼ė˜ģŠ¤ ė¹„źµ

Fig. 9. Mutual Inductance of 6 case geometry, close

../../Resources/kiee/KIEE.2020.69.11.1785/fig9.png

ź·øė¦¼. 10. ģ›ź±°ė¦¬ ė„ģ„ ģ˜ ģœ„ģ¹˜ė³„ ģƒķ˜øģž„ķ”¼ė˜ģŠ¤ ė¹„źµ

Fig. 10. Mutual Inductance of 6 case geometry, far

../../Resources/kiee/KIEE.2020.69.11.1785/fig10.png

ģƒķ˜øģøė•ķ„“ģŠ¤ ź°’ ģ‚°ģ¶œģ€ ź°€ģž„ ģ •ķ™•ķ•œ ģˆ˜ģ‹ģ“ Carson Seriesė”œ ķ‘œķ˜„ė˜ėŠ” ģ‹ģ“ź³ (13), ģ“ ģˆ˜ģ—“ģ˜ 1ķ•­ź¹Œģ§€ ė§Œģ„ ź³ ė ¤ķ•˜ė©“ ė³µģ†Œģ˜ģƒė²•ģ— ģ˜ķ•œ ģˆ˜ģ‹ģ“ ėœė‹¤(13)(14). ģ“ ė³µģ†Œģ˜ģƒė²• ģˆ˜ģ‹ģ“ ITU-T Directive II.(13) (Chap. 4. 4.1-22, pp.160) ģ™€ ė³“ź³ ģ„œ(17) ([ė¶€ė”5] 10-5-4)ģ— ģ˜¤ķƒ€ė”œ ģž˜ėŖ» ķ‘œźø°ė˜ģ–“ ģžˆė‹¤. ź·øėŸ¬ėƀė”œ ģ˜ģƒė²•ģ„ ģ‚¬ģš©ķ•˜ģ—¬ ź³„ģ‚°ķ•  ė•ŒėŠ” ģ£¼ģ˜ź°€ ķ•„ģš”ķ•˜ė‹¤.

źø°ģ”“ ė°©ģ‹ģ—ģ„œėŠ” ė„ģ„ ģ˜ ģœ„ģ¹˜ė³„ ģƒķ˜ø ģž„ķ”¼ė˜ģŠ¤ ź³„ģ‚°ģ—ģ„œ ź³µźø°ģ¤‘-ź³µźø°ģ¤‘ ė„ģ„ ģ— ģ˜ķ•œ ģˆ˜ģ‹ė§Œģ„ ź³ ė ¤ķ•œ ź²ƒģœ¼ė”œ ė˜ģ–“ ģžˆė‹¤. ė˜ķ•œ, ģžźø°ģž„ķ”¼ė˜ģŠ¤ėŠ” ģ‚¬ģš©ģžź°€ ź³„ģ‚°ķ•˜ģ—¬ ģž…ė „ķ•˜ėŠ” ė°©ģ‹ģœ¼ė”œ ė˜ģ–“ ģžˆģŒģ„ ģ‚¬ģš©ģ„¤ėŖ…ģ„œė„¼ ķ†µķ•“ ķ™•ģøķ•˜ģ˜€ėŠ”ė°, ģ”°ģ‚¬ķ•œ ģž…ė „ ė°ģ“ķ„°ė„¼ ė¶„ģ„ķ•œ ź²°ź³¼ ė§¤ģ„¤ģ ‘ģ§€ģ„ ģ“ ā€˜0ā€™ ģ¤€ģœ„ė³“ė‹¤ ė†’ź²Œ ģ„¤ģ •ė˜ģ–“ ģžˆģ–“ ģœ„ģ¹˜ė³„ źµ¬ė¶„ģ„ ķ•˜ģ§€ ėŖ» ķ–ˆė˜ ź²ƒģœ¼ė”œ ķŒė‹Øėœė‹¤. ė³ø ģ—°źµ¬ģ—ģ„œėŠ” ģœ„ ėŖØė“  ź²½ģš°ė„¼ ķ”„ė”œź·øėžØķ™” ķ•˜ģ—¬ ė³“ė‹¤ ģ •ķ™•ķ•œ ź³„ģ‚°ģ“ ģ“ė£Øģ–“ģ§€ė„ė” ķ•˜ģ˜€ė‹¤. ģ“ģ— ģ˜ķ•œ ź°œģ„  ķšØź³¼ėŠ” ķ‘œ 2ģ™€ ź·øė¦¼ 11ź³¼ ź°™ė‹¤.

ķ‘œ 2. ķ”„ė”œź·øėžØ ģµœģ¢…ź°œģ„  ź²°ź³¼

Table 2. Comparison Result of final renovation

No.

Are

Comm. Office

Comm. Line ID.

PIF Calculated [mV]

Reduce Ratio%

Previous

Program

1.Wire Addition

Final Improve

1

Chungbuk

Gagyung Taesung

0302-101-044

2,210

1,406

1,408

63.7

2

Chungnam

Sejong Bookang

0302-102-009

1,650

928

924

56.0

3

0302-102-030

2,450

1,445

1,411

57.6

4

Chun

buk

Iksan Mangsung

0306-106-033

1,380

865

850

61.6

5

0306-106-042

1,450

914

899

62.0

6

Chun

nam

KwangJu Im-Gok

0310-122-015

610

291

289

47.4

7

0310-122-023

760

434

430

56.6

8

Dae-

gu

KyungJu Hyun-Gok

1101-101-012

2,160

1,811

944

43.7

9

1101-101-016

1,820

1,074

544

29.0

10

Ankang Kangdong

1101-101-064

2,350

2,156

1,092

46.5

11

Angang Sabang

1101-101-025

2,170

2,218

988

45.5

Avr. (%)

Average Reduction Ratio (%)

51.9

Correct positioning to Earth(Daegu) Reduction

41.4

ź·øė¦¼. 11. ķ”„ė”œź·øėžØ ź°œģ„  ź²°ź³¼ ģ˜ˆģø”ģ¹˜ ė¹„źµ ź·øėž˜ķ”„

Fig. 11. The Graph of final renovation of predicted value

../../Resources/kiee/KIEE.2020.69.11.1785/fig11.png

ķ‘œ 2ģ—ģ„œ ė³“ė©“ ķ”„ė”œź·øėžØģ—ģ„œ ź³ ė ¤ķ•  ģˆ˜ ģžˆėŠ” ź°œģ„  ģ‚¬ķ•­ģ„ ėŖØė‘ ģ ģš©ķ•œ ź²°ź³¼ėŠ” ķ‰ź·  ź²½ź°ģœØ ģ•½ 52%ģ˜ ź°œģ„  ķšØź³¼ė„¼ ė³¼ ģˆ˜ ģžˆģ—ˆė‹¤. ė‹Ø, 1 ~ 7ė²ˆ ź¹Œģ§€ģ˜ ź²°ź³¼ģ—ģ„œėŠ” ź°œģ„  2ģ˜ ķšØź³¼ź°€ ė‘ė“œėŸ¬ģ§€ģ§€ ģ•Šģ€ė°, ź·ø ģ“ģœ ėŠ” ģž„ģ£¼ė„ ė°ģ“ķ„° ģž‘ģ„±ģ—ģ„œ ź¶¤ė„ ģ§€ė°˜ģ˜ ė†’ģ“ź°€ ģ§€ķ‘œ źø°ģ¤€ė³“ė‹¤ ė†’ź²Œ ģ§€ģ •ė˜ģ–“ģ„œģ“ė‹¤. ģ¦‰, ė§¤ģ„¤ģ ‘ģ§€ģ„ ģ˜ ģœ„ģ¹˜ź°€ ģ§€ģƒģœ¼ė”œ ź°„ģ£¼ė˜ģ–“ ė„ģ„ ģ˜ ģœ„ģ¹˜ė³„ źµ¬ė¶„ ź³„ģ‚°ģ“ ģ“ė£Øģ–“ģ§€ģ§€ ģ•Šģ•˜źø° ė•Œė¬øģ“ė‹¤. ģž…ė „ė°ģ“ķ„°ģ—ģ„œ ģ§€ģ¤‘ ģ§€ģ„ ģœ¼ė”œ ģ§€ģ •ė˜ģ–“ ģžˆėŠ” case 8 ~ 11 ģ„ ė”œģ˜ ź²°ź³¼(ėŒ€źµ¬ģ§€ģ—­)ėŠ” ķ‰ź·  41.4% ģˆ˜ģ¹˜ė”œģ˜ ź²½ź°ģ„ ė³“ģ“ė©°, ģ“ėŠ” ģœ„ģ¹˜ė³„ ģž„ķ”¼ė˜ģŠ¤ ź³„ģ‚°ģ“ ģ˜ķ–„ģ„ ėÆøģ¹˜ź³  ģžˆģŒģ„ ė³“ģøė‹¤. ź·øėŸ¬ėƀė”œ, ė³“ė‹¤ ģ •ķ™•ķ•œ ź³„ģ‚°ģ„ ģœ„ķ•“ģ„œėŠ” ģž…ė „ė°ģ“ķ„° ģž‘ģ„± ģ‹œ ģ² ė„ź¶¤ė„ģ˜ ģ§€ė°˜ ė†’ģ“ė„¼ 0 ģœ¼ė”œ źø°ģ¤€ķ•˜ģ—¬ ģ§€ģ¤‘, ģ§€ģƒģœ¼ė”œ ģž…ė „ė°ģ“ķ„°ė„¼ źµ¬ė¶„ ģž‘ģ„±ķ•˜ģ—¬ ģž…ė „ķ•˜ģ—¬ģ•¼ ķ•Øģ„ ģ•Œ ģˆ˜ ģžˆģ—ˆė‹¤.

2.2. ģø”ģ • ź²€ģ¦

ķ”„ė”œź·øėžØģ˜ ģ •ķ™•ė„ė„¼ ź²€ģ¦ķ•˜źø° ģœ„ķ•“ ķ˜„ģž„ ģø”ģ •ģ„ ģˆ˜ķ–‰ķ•˜ģ˜€ė‹¤. ė¹„źµėŒ€ģƒ 4 ģ§€ģ—­ģ˜ ģ² ė„ ź¶¤ė„ģ— ėŒ€ķ•œ ķ†µģ‹ ģ„ ģ˜ ģœ„ģ¹˜ėŠ” ź·øė¦¼ 9ģ™€ ź°™ė‹¤. ģ² ė„ ź¶¤ė„ė„¼ ź°€ė”œģ¶• 0ģœ¼ė”œ ė†“ģ•˜ģ„ ė•Œ ķ†µģ‹ ģ„ ģ˜ ė¶„ķ¬ ģƒķ™© ė° ģ“ź²©ź±°ė¦¬ ė° ģœ„ģ¹˜ė„¼ ķ‘œģ‹œķ•œė‹¤. ģ—­ė°©ķ–„ ģ—°ź²° ė° ģˆ˜ģ§ģœ¼ė”œ ė¶„ķ¬ķ•œ ģ„ ė”œė¶€ė¶„ģ“ ķ¬ķ•Øė˜ģ–“ ģžˆģ–“ źø°ķƒ€ ģž”ģŒģ „ģ••ģ„ ėŖØė‘ ė°°ģ œ ģ‹œķ‚¬ ģˆ˜ėŠ” ģ—†ģ§€ė§Œ ė¹„źµģ  ģ–‘ķ˜øķ•œ ģ—¬ź±“ģœ¼ė”œ ė³¼ ģˆ˜ ģžˆė‹¤. ė³“ė‹¤ ģ •ķ™•ķ•œ ģø”ģ •ģ„ ģœ„ķ•“ģ„œėŠ” ķ‰ķ–‰ģ„ ė”œ ė¶€ė¶„ė§Œ ģžˆėŠ” Test-bed ė„¼ źµ¬ģ„±ķ•˜ėŠ” ź²ƒģ“ ė°”ėžŒģ§ķ•˜ė‹¤.

2.2.1. ģø”ģ •ėŒ€ģƒģ§€ģ—­ ģ“ź²©ė„ ė° ģø”ģ •ķŒŒķ˜•

ź·øė¦¼. 12. ź° ģø”ģ • ķ†µģ‹ ģ„ ė”œģ˜ ģ“ź²©ė„

Fig. 12. The Separation diagrams of Communication Lines for measure

../../Resources/kiee/KIEE.2020.69.11.1785/fig12-1.png

../../Resources/kiee/KIEE.2020.69.11.1785/fig12-2.png

../../Resources/kiee/KIEE.2020.69.11.1785/fig12-3.png

ź·øė¦¼. 13. ź° ģø”ģ • ķ†µģ‹ ģ— ģœ ė„ė˜ėŠ” ģ„ ėŒ€ģ§€ģž”ģŒģ „ģ••

Fig. 13. Line to Ground Noise Voltage at each site

../../Resources/kiee/KIEE.2020.69.11.1785/fig13-1.png

../../Resources/kiee/KIEE.2020.69.11.1785/fig13-2.png

../../Resources/kiee/KIEE.2020.69.11.1785/fig13-3.png

2.2.2. ģø”ģ •ģ¹˜ģ™€ ģ˜ˆģø”ź³„ģ‚°ģ¹˜ ė¹„źµ

ģ˜ˆģø” ź³„ģ‚°ģ¹˜ģ™€ ģø”ģ •ģ¹˜ģ˜ ė¹„źµź°€ ķ‘œ 3 ė° ź·øė¦¼ 14, 15ģ— ė‚˜ķƒ€ė‚˜ ģžˆė‹¤. ģœ ė„ģ „ģ••ģ˜ ģµœėŒ€ģ¹˜ė„¼ źµ¬ķ•˜źø° ģœ„ķ•“ģ„œėŠ” ķ•˜ė‚˜ģ˜ źø‰ģ „źµ¬ź°„ģ„ 40 ~ 60ź°œģ˜ źµ¬ź°„ģœ¼ė”œ ė‚˜ėˆ„ź³  ź° źµ¬ź°„ģ— ģ—“ģ°Øź°€ ė“¤ģ–“ ģ™”ģ„ ė•Œė§ˆė‹¤ģ˜ ź²½ģš°ģ— ėŒ€ķ•˜ģ—¬ ź°ź° ģœ ė„ģ „ģ••ģ„ ź³„ģ‚°ķ•˜ģ—¬ ģ“ ź³„ģ‚°ģ¹˜ģ¤‘ ģµœėŒ€ģ¹˜ė„¼ ģ„ ė³„ķ•œė‹¤. ė³µģ„  ź¶¤ė„ ķ•“ģ„ģ„ ģœ„ķ•“ģ„œėŠ” ģƒ-ķ•˜ķ–‰ ģ—“ģ°Øź°€ źµķ–‰ķ•˜ėŠ” ź²½ģš°ė„¼ ź³ ė ¤ķ•˜ģ—¬ ėŖØė“  ź²½ģš°ģ˜ ģ”°ķ•©ģ„ ź³„ģ‚°ķ•œė‹¤. źµ¬ź°„ģ„ 40ź°œė”œ ė‚˜ėˆˆ ź²½ģš° ģ“ 1,600ė²ˆģ˜ ź³„ģ‚°ģ“ ķ•„ģš”ķ•˜ė‹¤. ģ—¬źø°ģ— ź° źø‰ģ „źµ¬ź°„ģ— 2ėŒ€ ģ“ģƒģ˜ ģ—“ģ°Øź°€ ė“¤ģ–“ģ˜¤ėŠ” ź²½ģš°ėŠ” ź·ø ģŠ¹ģˆ˜ė§Œķ¼ ź³„ģ‚° ķšŸģˆ˜ź°€ ģ¦ź°€ķ•˜ėŠ” ė°, ķ‰ź·  ģ—“ģ°Ø ė°°ģ • ź°„ź²©ģ„ ź³ ė ¤ķ•˜ė©“ 2ėŒ€ģ”© ė“¤ģ–“ģ˜Ø ź²½ģš°ė¼ ķ•˜ė”ė¼ė„ ģ“ģ˜ 1/2 ģ •ė„ģ˜ ķšŸģˆ˜ė©“ ź°€ėŠ„ķ•˜źø° ė•Œė¬øģ— 64,000ķšŒģ˜ ź³„ģ‚°ģ“ė©“ ź°€ėŠ„ķ•˜ģ˜€ė‹¤.

ķ‘œ 3. ģ„ ėŒ€ģ§€ģž”ģŒģ „ģ•• ģø”ģ •ģ¹˜-ź³„ģ‚°ģ¹˜ ė¹„źµ

Table 3. Result of Measurement & Calculation Values (Line to Earth Noise Voltage)

怀

Applied Earth Resistivity

No. of Train

1.Yongdong Simchun

2.Asan Sandong

3.Chunan Sojung

4.Daegu Bisan

Mesured

怀

怀

788

2,397

1,712

1,972

Result of Improved Algorithm

Max. Measured Value

2 train

crossing

1,295

1,621

3,649

4,509

1 train

607

735

1,780

2,100

Min. Measured Value

2 train

crossing

1,517

2,383

3,774

5,196

1 train

734

1,180

1,850

2,420

Privious Algorithm

Max. Measured Value

2 train

crossing

3,159

4,278

22,583

10,778

1 train

1,670

2,630

12,400

7,180

Min. Measured Value

2 train

crossing

3,395

5,677

18,495

10,221

1 train

1,790

3,400

10,800

5,680

ź·øė¦¼. 14. ź°œģ„  ģ „ķ›„ ģ˜ˆģø”ģ¹˜ ė° ģø”ģ •ģ¹˜ ė¹„źµ ź·øėž˜ķ”„

Fig. 14. Comparison graph for the effect of improvement

../../Resources/kiee/KIEE.2020.69.11.1785/fig14.png

ź³„ģ‚° ź²°ź³¼ė„¼ ģ‚“ķŽ“ė³“ė©“ ė³µģ„  źø°ģ¤€ģœ¼ė”œ ģœ ė„ģ „ģ••ģ˜ ģµœėŒ€ģ¹˜ź°€ ė°œģƒķ•˜ėŠ” ź²½ģš°ėŠ” ģƒ-ķ•˜ķ–‰ ģ—“ģ°Øź°€ ķ†µģ‹ ģ„ ė”œ ź·¼ģ²˜ģ—ģ„œ źµķ–‰ķ•˜ėŠ” ź²½ģš°ģ— ė°œģƒķ•˜ģ˜€ė‹¤. ģø”ģ •ģ—ģ„œ ģ“ ź²½ģš°ė„¼ ė§Œė‚˜źø°ėŠ” ź·¹ķžˆ ģ–“ė ¤ģš°ėƀė”œ ź³„ģ‚° ė¹„źµė„¼ ģœ„ķ•“ źµ¬ź°„ ė‚“ 1ėŒ€ģ˜ ģ—“ģ°Øė§Œ ė“¤ģ–“ ģ˜Ø ź²½ģš°ė„¼ ź°™ģ“ ź³„ģ‚°ķ•˜ģ—¬ ė¹„źµķ•˜ģ˜€ė‹¤. ė˜ķ•œ, ģœ ė„ģ „ģ••ģ€ ėŒ€ģ§€ź³ ģœ ģ €ķ•­ģ˜ ķ•Øģˆ˜ģ“ėƀė”œ ģ˜ˆģø”ź³„ģ‚° ģ‹œ ģø”ģ •ģ„ ė³‘ķ–‰ķ•˜ģ—¬ģ•¼ ķ•˜ėŠ”ė°, ė³ø ģ—°źµ¬ģ—ģ„œėŠ” ģø”ģ • źµ¬ģ—­ ė‹¹ 4 ~ 5ź°œ ģ§€ģ ģ˜ ėŒ€ģ§€ź³ ģœ ģ €ķ•­ģ„ ģø”ģ •ķ•˜ģ˜€ė‹¤. ėŒ€ģ§€ź³ ģœ ģ €ķ•­ģ€ ģœ„ģ¹˜ģ™€ ź³„ģ ˆģ— ėŒ€ķ•˜ģ—¬ ģƒģ‹œ ė°”ė€ŒėŠ” ź°’ģ“ėƀė”œ ģ‹¤ė¬“ģƒģ—ģ„œėŠ” ģµœėŒ€ģ „ģ•• ģ˜ˆģø”ģ„ ģœ„ķ•“ģ„œėŠ” ź³„ģ ˆ ė³€ķ™”ģœØģ„ ź³ ė ¤ķ•˜ź³ , ź°€ėŠ„ķ•œ ķ•œ ģµœėŒ€ķ•œ ė§Žģ€ ģø”ģ •ģ„ ķ•˜ė„ė” ķ•˜ģ—¬ģ•¼ ķ•œė‹¤. ģ—¬źø°ģ„œėŠ” ģ‹¤ģø”ė‹¹ģ‹œ ģø”ģ •ź°’ģ˜ ģµœģ†Œģ¹˜ģ™€ ģµœėŒ€ģ¹˜ģ— ėŒ€ķ•œ ź³„ģ‚°ģ„ ėŖØė‘ ģˆ˜ķ–‰ķ•˜ģ—¬ ė¹„źµķ•˜ģ˜€ė‹¤. ė˜ķ•œ, ģ—“ģ°Ø ģ œė™ ģ‹œģ—ėŠ” ė” ė§Žģ€ ė°©ķ•“ģ „ė„˜ź°€ ķė„“ėŠ”ė°, ė³ø ģø”ģ • źµ¬ź°„ģ€ ėŒ€ė¶€ė¶„ ģ œė™ģ§€ģ—­ģ“ ģ•„ė‹ˆėƀė”œ ź²¬ģø ģ‹œ ė°©ķ•“ģ „ė„˜ė„¼ ģ ģš©ķ•˜ģ˜€ź³ , ģ—“ģ°Ø ģ†ė„ģ— ėŒ€ķ•œ ģ „ė„˜ ķŠ¹ģ„±ģ“ ė‹¤ė„“ėƀė”œ ģø”ģ • ģ‹œ ģ—“ģ°Ø ģ†ė„ė„¼ ģ†ė„ź³„ė”œ ģø”ģ •ķ•˜ģ—¬ ģ“ė„¼ ģ ģš©ķ•˜ģ˜€ėŠ”ė°, ģ‹œģ† 200 [km/h] ģ“ģƒģ—ģ„œėŠ” źµ¬ė™ ģ „ė„˜ź°€ saturation ė˜ėƀė”œ ģµœėŒ€ģ¹˜ė„¼ ģ ģš©ķ•˜ģ˜€ź³ , 4ģ§€ģ—­ģø ėŒ€źµ¬ ė¹„ģ‚°ģ§€ģ—­ģ—ģ„œė§Œ ģ—“ģ°Ø ģ†ė„ź°€ 110[Km/h]ė”œ ģø”ģ •ė˜ģ–“ ķŠ¹ģ„± ź·øėž˜ķ”„ģ—ģ„œ ģƒģ‘ķ•˜ėŠ” ė“±ź°€ģ „ė„˜ė„¼ ģ„ ķƒķ•˜ģ—¬ ģ ģš©ķ•˜ģ˜€ė‹¤.

ź·øė¦¼ 15ėŠ” ķ•“ė…ģ˜ ķŽøģ˜ė„¼ ģœ„ķ•“ ź°œģ„  ķ›„ ģ˜ˆģø” ź³„ģ‚°ģ¹˜ģ™€ ģø”ģ •ģ¹˜ė§Œģ„ ķ™•ėŒ€ ė¹„źµķ•œ ź·øė¦¼ģœ¼ė”œģ„œ, ź·øėž˜ķ”„ģ—ģ„œ ģƒ‰ģœ¼ė”œ ķ‘œģ‹œėœ ģ˜ģ—­ģ€ ė³µģ„ ź¶¤ė„ģ— 2ėŒ€ģ˜ ģƒĀ·ķ•˜ķ–‰ ģ—“ģ°Øź°€ źµķ–‰ķ•˜ėŠ” ź²½ģš°ģ˜ ģµœėŒ€ģ¹˜ģ™€ ė³µģ„ ź¶¤ė„ģ— ė‹Ø ķ•œėŒ€ģ˜ ģ°ØėŸ‰ė§Œ ģ§„ģž…ėœ ź²½ģš°ģ˜ ģµœģ†Œģ¹˜ ģ˜ģ—­ģ„ ģø”ģ •ėœ ėŒ€ģ§€ź³ ģœ ģ €ķ•­ģœØģ˜ ģµœėŒ€ģ¹˜ģ™€ ģµœģ†Œģ¹˜ģ˜ ķŽøģ°Øė”œ ź³„ģ‚°ķ•˜ģ—¬ ģ§€ģ •ķ•œ ģ˜ģ—­ģœ¼ė”œ, ģ“ ģ˜ģ—­ģ€ ģ°ØėŸ‰ģ˜ ģ§„ģž… ėŒ€ģˆ˜ģ— ė”°ė¼ ģœ ė„ģ „ģ••ģ“ ė°œģƒķ•  ģˆ˜ ģžˆėŠ” ģ˜ģ—­ģ„ ķ‘œģ‹œķ•œė‹¤. ź²°ź³¼ź·øėž˜ķ”„ģ—ģ„œ ė³“ė“Æģ“ ģø”ģ •ģ¹˜ėŠ” 4ģ§€ģ—­ ģ¤‘ 3ģ§€ģ—­ģ—ģ„œ ė³µģ„ ź¶¤ė„ ė‹Øģ¼ģ°ØėŸ‰ ģ§„ģž…ģø ź²½ģš°ģ™€ ģž˜ ė¶€ķ•©ķ•˜ģ˜€ė‹¤. ģø”ģ •ģ§€ģ—­ 2ģ—ģ„œė§Œ ė³µģ„ źµķ–‰ģ— ź°€ź¹Œģš“ ė†’ģ€ ģø”ģ •ģ¹˜ė„¼ ė‚˜ķƒ€ė‚“ģ—ˆėŠ”ė°, ģ“ėŠ” ģ²œģ•ˆģ•„ģ‚°ģ—­ģ— ģ •ģ°Øķ•˜źø° ģœ„ķ•œ ģ”°źø° źø‰ģ œė™ķšØź³¼ģ™€ źµ¬ź°„ ė‚“ ģƒėŒ€ ź¶¤ė„ģ— ģ—“ģ°Ø ģ§„ģž…ģ“ ģ”“ģž¬ķ•˜ėŠ” ķšØź³¼ź°€ ģžˆģ—ˆė˜ ź²ƒģœ¼ė”œ ģ¶”ģ •ėœė‹¤. ģ“ ź²½ģš°ė„ ģµœėŒ€ ģœ„ķ—˜ģ „ģ•• ģ˜ˆģø”ģ¹˜ ģ“ė‚“ģ— ė“¤ģ–“ź°€ėƀė”œ ģ˜ˆģø”ź³„ģ‚°ģ˜ ėŖ©ģ ģ— ģ–“źø‹ė‚˜ģ§€ėŠ” ģ•Šģœ¼ė©°, ģ œė™ ģ˜ģ—­ģœ¼ė”œ ģ§€ģ •ķ•˜ė©“ ģø”ģ •ģ¹˜ 2,397 [mV] ėŒ€ė¹„ ģ˜ˆģø” ģœ ė„ģ „ģ•• ģµœėŒ€ģ¹˜ź°€ 2,753 [mV] ź¹Œģ§€ ė‚˜ģ˜¤ėƀė”œ ģƒģ„± ź°€ėŠ„ ģ „ģ••ģ¹˜ ģ“ė‚“ė”œ ė“¤ģ–“ģ˜Øė‹¤.

ź·øė¦¼. 15. ģø”ģ •ģ¹˜ģ™€ ź°œģ„ ķ”„ė”œź·øėžØ ģ˜ˆģø”ź³„ģ‚°ģ¹˜ ė¹„źµ ź·øėž˜ķ”„

Fig. 15. The Comparison of the measured values and the calculated ones.

../../Resources/kiee/KIEE.2020.69.11.1785/fig15.png

2.2.3. ģ˜ˆģø”ź³„ģ‚° ģˆ˜ķ–‰ģ‹œģ˜ ģœ ģ˜ģ 

ė³ø ģ—°źµ¬ź³¼ģ •ģ—ģ„œ ė„ģ¶œėœ ģ˜ˆģø”ź³„ģ‚° ģˆ˜ķ–‰ģ‹œģ˜ ģœ ģ˜ģ ģ€ ė‹¤ģŒź³¼ ź°™ė‹¤.

1) ė‹¤ė„ģ²“ė²•ģ„ ģ‚¬ģš©ķ•˜ėŠ” ģœ ė„ģ „ģ•• ķ•“ģ„ģ—ėŠ” ģ„ ė”œģ™€ ķ‰ķ–‰ķ•œ ėŖØė“  ė„ģ²“ė„¼ ė…ė¦½ģ ģœ¼ė”œ ź³ ė ¤ķ•“ģ•¼ ķ•œė‹¤.

2) ģž…ė „ė°ģ“ķ„° ģž‘ģ„± ģ‹œ ģ² ė„ź¶¤ė„ė„¼ ģ§€ķ‘œė©“ģœ¼ė”œ ķ•˜ģ—¬ ė§¤ģ„¤ģ ‘ģ§€ģ„ ģ“ ģ§€ģ¤‘ģ— ģœ„ģ¹˜ķ•˜ė„ė” ģž‘ģ„±ķ•˜ģ—¬ģ•¼ ķ•œė‹¤.

3) ė„ģ„ ź°„ ģ—°ź²°ė¶€ģœ„ė„¼ ģµœėŒ€ķ•œ ģ„¹ķ„°ģˆ˜ģ™€ ė§žģ¶”ģ–“ źµ¬ź°„ģ„ ė‚˜ėˆ„ģ–“ģ•¼ ķ•œė‹¤. ģ—°ź²°ź°„ź²©ģ“ ģ“˜ģ“˜ķ•˜ģ—¬ ė¶ˆź°€ķ”¼ķ•œ ź²½ģš°ģ—ėŠ” ė“±ź°€ ģ—°ź²°ģ €ķ•­ģ„ źµ¬ķ•˜ģ—¬ ģ ģš©ķ•œė‹¤.

4) ė“±ź°€ ģœ ė„ė°©ķ•“ģ „ė„˜ėŠ” ģ—“ģ°Ø ģ œė™ģ‹œģ™€ ź²¬ģøģ‹œ ė‹¤ė„ø ź°’ģ„ ź°€ģ§€ėƀė”œ ģ œė™ źµ¬ģ—­ģ„ ģ§€ģ •ķ•˜ģ—¬ źµ¬ė¶„ģ ģš© ķ•˜ģ—¬ģ•¼ ķ•œė‹¤.

5) ģœ ė„ģ „ģ•• ģ˜ˆģø”ģ— ķ•„ģš”ķ•œ ėŒ€ģ§€ź³ ģœ ģ €ķ•­ ģø”ģ •ģ€ ģ—¬ź±“ģ“ ķ—ˆė½ķ•˜ėŠ” ķ•œ ģµœėŒ€ķ•œ ģ„øė°€ķ•˜ź²Œ ģø”ģ •ķ•Øģ“ ė°”ėžŒģ§ķ•˜ė‹¤.

3. ź²° ė” 

ģ „źø°ģ² ė„ģ— ģ˜ķ•“ ķ†µģ‹ ģ„ ģ—ģ„œ ė°œģƒķ•˜ėŠ” ģœ ė„ģ „ģ••ģ„ ģ˜ˆģø”ķ•˜źø° ģœ„ķ•œ ķ”„ė”œź·øėžØģ„ ģž‘ģ„±ķ•˜ź³  ė³€ź²½ėœ ģ‚¬ķ•­ģ— ėŒ€ķ•œ ķšØź³¼ ź²€ķ† ģ™€ ķ˜„ģž„ ģø”ģ •ģ„ ķ†µķ•œ ź²€ģ¦ģ„ ģˆ˜ķ–‰ķ•˜ģ˜€ė‹¤. ė˜ķ•œ ė³ø ģ—°źµ¬ź³¼ģ •ģ„ ķ†µķ•“ ģž…ė „ė°ģ“ķ„°ģ˜ ģž‘ģ„±ģ— ėŒ€ķ•œ ģœ ģ˜ģ ģ„ ģ°¾ģ„ ģˆ˜ ģžˆģ—ˆė‹¤. ė‹¤ė„ģ²“ ź³„ģ‚°ė²•ģ„ ģ ģš©ķ•˜ėŠ”ė° ģ‚¬ģš©ė˜ėŠ” ķ‰ķ–‰ė„ģ²“ģˆ˜ė„¼ ģ‹¤ģ œ ģ‹œģŠ¤ķ…œģ— ė§žģ¶° ģ¦ģ„¤ķ•˜ź³ , ė„ģ„  ģœ„ģ¹˜ģ— ė”°ė„ø ģž„ķ”¼ė˜ģŠ¤ ź³„ģ‚°ģ‹ģ„ ģ“ė” ģ— ė§žź²Œ źµ¬ė¶„ ģ ģš©ķ•œ ź²°ź³¼, źø°ģ”“ ķ”„ė”œź·øėžØ ėŒ€ė¹„ 41~50%ģ˜ ź²½ź°ģœØģ„ ģ–»ģ„ ģˆ˜ ģžˆģ—ˆė‹¤. ė³ø ķ”„ė”œź·øėžØģ˜ ķšØģš©ģ„±ģ„ ź²€ģ¦ķ•˜źø° ģœ„ķ•“ ķ˜„ģž„ ģ‹¤ģø”ģ„ ģˆ˜ķ–‰ķ•˜ģ˜€ź³ , ģø”ģ • ģƒķ™©ģ— ė¶€ķ•©ķ•˜ėŠ” ė§¤ģš° ķƒ€ė‹¹ķ•œ ź²°ź³¼ė„¼ ģ–»ģ„ ģˆ˜ ģžˆģ—ˆė‹¤. ź·øėŸ¬ėƀė”œ ė³ø ķ”„ė”œź·øėžØģ€ ģ² ė„ ź±“ģ„¤ ģ‹œ ķ†µģ‹ ģ‹œģ„¤ģ— ģ•¼źø°ė˜ėŠ” ģœ„ķ—˜ģ„ ėÆøė¦¬ ģ˜ˆģø”ķ•˜ģ—¬ ģ”°ģ¹˜ķ•˜ėŠ” ė° ģ‹¤ė¬“ģ ģš©ģ“ ź°€ėŠ„ķ•˜ė‹¤. ķ–„ķ›„, ė³“ė‹¤ ģ •ķ™•ķ•œ ģ˜ˆģø”ź³„ģ‚°ģ„ ģœ„ķ•“ģ„œėŠ”, ķ”„ė”œź·øėžØ ģ½”ė”© ģ™øģ˜ ė¶„ģ•¼ė”œ ź³ ė ¤ķ•“ģ•¼ ķ•  ģ‚¬ķ•­ģø, ģ² ė„ ģ‹œģŠ¤ķ…œģ˜ ė°œģ „ģ— ė”°ė„ø ź°ģ¢… ķŒŒė¼ėÆøķ„°ģ˜ ź°œģ„ , ģø”ģ •ģ— ģ˜ķ•œ ė“±ź°€ė°©ķ•“ģ „ė„˜ ė° ź¶¤ė„ ėˆ„ģ„¤ ģ €ķ•­ģ¹˜ģ˜ ź°œģ • ė“± ģ‹œģŠ¤ķ…œģ˜ ģž…ė „ ė°ģ“ķ„°ė„¼ ģ² ė„ģ‹œģ„¤ģ˜ ģ§„ė³“ģ— ė§žģ¶° ģƒˆė”œ ģ •ė¦½ķ•˜ėŠ” ģ—°źµ¬ź°€ ķ•„ģš”ķ•˜ė‹¤.

Acknowledgements

This study was supported by 2019 Information and communication broadcasting R&D project fund (2019-0-01295) of the Ministry of Science and ICT and the 2017 Research Grant from Kangwon National University(No. 520170074).

References

1 
Regulations on the technical standards of broadcasting and communication facilities, Presidential decree 24445Google Search
2 
2014-11, Technical criteria for the method of calculating the specific electric power induction voltage, asterisk 6, National Radio Research Agency noticeGoogle Search
3 
Standard test method for the technical standards of broad- casting and communication facilities(National Notice 2012- 17), National Radio Research AgencyGoogle Search
4 
TTA Standard TTAK.KO-04.0196, 2014-12-17, The Calculation Method of Inducing Current due to Alternate Current Railway System fed by Auto-Transformer, Telecommunications Technology AssociationGoogle Search
5 
TTA Standard TTAK.KO-04.0092/R1, 2014-12-17, The determination method of consideration area about electromagnetic induction to telecommunication facilities, Telecommunications Technology AssociationGoogle Search
6 
TTA Standard TTAK.KO-04.0207, 2015-12-16, The Calculation Method of Induced Voltage onto Telecommunication Line by an Alternate Current Electrified Railway Facilities fed by Auto-Transformer, Telecommunications Technology AssociationGoogle Search
7 
TTA Standard TTAK.KO-04.0183/R1, 2015-12-16, The Common Level Approach on a Countermeasure against Electromagnetic Interference by a Power Line with Broadcasting and Communications Services, Telecommunications Technology AssociationGoogle Search
8 
TTA Standard TTAS.KO-04.0027, 2004-12-23, Grounding Standard for the Protection of Power Induction to Telecommunication Lines, Telecommunications Technology AssociationGoogle Search
9 
TTAK.KO-01.0217, 2019.12.11, The Calculation Method of Inducing Current and Induced Voltages in the Environment of Multiconductor LinesGoogle Search
10 
TTAK.KO-01.0218, 2019.12.11, A standardized development method of power induction voltage calculation program for the case of multiconductor line circumstanceGoogle Search
11 
TTAK.KO-04.0196/R1, 2019.12.11, The Application Design of Multiconductor Calculation Method into Induced Voltages by Electrified Traction SystemGoogle Search
12 
ITU-T, K.68, 2008, Series K: Protection Against Interference, Operator responsibilities in the management of electro- magnetic interference by power systems on telecommunication systemsGoogle Search
13 
TU-T CCITT DIRECTIVES, 1999, concerning the protection of telecommunication lines against harmful effects from electric power and electrified railway lines, Calculating induced voltages and currents in practical cases, Vol. IIGoogle Search
14 
ITU-T CCITT DIRECTIVES, 1999, concerning the protection of telecommunication lines against harmful effects from electric power and electrified railway lines, Capacitive, Inductive and Conductive Coupling: Physical Theory and Calculation Methods, Vol. IIIGoogle Search
15 
ITU-T CCITT DIRECTIVES, 1999, concerning the protection of telecommunication lines against harmful effects from electric power and electrified railway lines, Inducing- Currents and Voltage in Electrified Railway Systems, Vol. IVGoogle Search
16 
Seneff, Lockwood Harold, , Study of the method of geometric mean distances used in inductance calculations, Masters Theses. 6747Google Search
17 
KAIST, Dong-Nam TDS, 1993, Telecommunication Induced Voltage Prediction Calculation Standard Design ReportGoogle Search
18 
2005, Redevelopment of Induction Voltage Prediction and Calcul- ation Program User Manual, Korea Rail Network Authority, Daeyoung Communication Co., Ltd., Dongnam Communi- cation Co., LtdGoogle Search
19 
2015.12, Power Induction Measures Joint Research Council Final Report on Power Induction Voltage Measurement, Power Induction Voltage Joint Research Council(National Radio Research Agency, Korea Rail Network Authority, KT Co., Ltd, Electronics and Telecommunication Research Institute, Chungnam National University), pp. 32-34Google Search
20 
Sang-Mu Lee, 2020.02, Final report on development of standard program for calculating power induction voltage in multi-conductor shielded line environment, Electronics and Telecommunication Research Institute, Kangwon National UniversityGoogle Search

ģ €ģžģ†Œź°œ

Kyung Choi
../../Resources/kiee/KIEE.2020.69.11.1785/au1.png

1981. Seoul National Univ. Electrical Eng. BS,

1983. Seoul National Univ. Electrical Eng. MA,

1988. Seoul National Univ. Electrical Eng. Ph.D,

1989.~present : Professor, Dept. of Electronics Eng. Kangwon National Univ., Korea

Hwang-Kyu Choi
../../Resources/kiee/KIEE.2020.69.11.1785/au2.png

1984. Kyunpook N. Univ. Electronics Eng. BS,

1986. KAIST, Electrical Eng. MA

1989. KAIST, Electrical Eng. Ph.D

1990.~present : Professor, Dept. of Computer Eng. Kangwon National Univ., Korea

Sang-Moo Lee
../../Resources/kiee/KIEE.2020.69.11.1785/au3.png

1989. Dankook Univ. Electronics Eng. BS,

2000. KAIST Computer Eng. MA

2013. Choongnam N.l Univ. Data Base, Ph.D

1991.~present Senior Research Engineer, Stan- dards & Open Source Research Division, ETRI, Korea

Hyang-Beom Lee
../../Resources/kiee/KIEE.2020.69.11.1785/au4.png

1989. Seoul National Univ. Electrical Eng. BS,

1991. Seoul National Univ. Electrical Eng. MA,

1995. Seoul National Univ. Electrical Eng. Ph.D,

1998.~present : Professor, Dept. of Electronics Eng. Soongsil Univ., Korea