1. ์ ๋ก
์ต๊ทผ ๊ธฐ๊ณํ์ต ๋ถ์ผ์ ์ฐ๊ตฌ๊ฐ ๋ฐ์ ํจ์ ๋ฐ๋ผ ์ต๊ทผ ์๋ฃ ์์ ๋ถ์ผ์ ๊ธฐ๊ณํ์ต(Machine Learning) ๋ถ์ผ์ ์ตํฉ์ด ํ๋ฐํ ์ด๋ฃจ์ด์ง๊ณ ์๋ค(1-6). ํนํ ์ด๋ฏธ์ง ๋ถ์ ๋ฐ ๋ถ๋ฅ์ ๊ธฐ๊ณํ์ต ์ ์ฉ์ด ํ๋ฐํ ์ด๋ฃจ์ด์ง๊ณ ์์ผ๋ฉฐ, ์ฃผ๋ก ์๋ฃ ๋ถ์ผ์์ ํ์์ ์์ค๋ ์ด(X-ray), CT ๊ทธ๋ฆฌ๊ณ MRI์
์ด๋ฏธ์ง๋ฅผ ํ์ฉํ ๊ธฐ๊ณํ์ต์ด ๋ด๋ฆฐ ์ง๋ณ ์ง๋จ, ์์ธก, ์น๋ฃ ๋ฐฉ๋ฒ ์ ์ ์ฐ๊ตฌ๊ฐ ์ด๋ฃจ์ด์ง๊ณ ์๋ค. ๋ฏธ๊ตญ IBM์ AI ๋ฅํฐ ์์จ(Watson)์ ์ธ๊ตญ์
์ ์ผํฐ๋ฟ๋ง ์๋๋ผ ๊ตญ๋ด ์ ์ผํฐ์๋ ๋์
๋์ด ํ์, ์ ๋ฆฝ์ ์ ๋ฑ ์ ์ง๋ฃ๋ฅผ ์ง์ํ๊ณ ์์ผ๋ฉฐ(7), ์ค๊ตญ AI ๋ฅํฐ ์ค์ค์ด(Xiaoyi)๋ 2017๋
์ ์์ฌ ์๊ฒฉ์ํ์ ํฉ๊ฒฉํด 2018๋
์ข
ํฉ ๊ฑด๊ฐ๊ฒ์ง ์๋น์ค๋ฅผ ์ ๊ณตํ๊ณ ์๋ค.
์ต๊ทผ ์ฝ๋ก๋19์ ํฌ๋ฐ๋ฏน(pandemic) ์ํฉ์์, ๊ธฐ๊ณํ์ต์ ๊ธฐ๋ฐํ AI๋ฅผ ํ์ฉํ ๋น๋๋ฉด ์ง๋ฃ๊ฐ ์ฃผ๋ชฉ์ ๋ฐ๊ณ ์๋ค. ํนํ ๋น๊ต์ ์์ฝ๊ฒ ์ป์ ์
์๋ ์ด๋ฏธ์ง ๋ฐ์ดํฐ๋ฅผ ํตํด์ ๊ฐ์์ AI ๋ฅํฐ๊ฐ 1์ฐจ ํ๋จ์ ํตํด์ ํ์ ์ง๋ณ์ ๊ธด๊ธ์ฑ์ ๊ธฐ๋ฐํ ์ฐ์ ์์๋ฅผ ๊ฒฐ์ ํ ์ ์๋ค. ๋ฐ๋ผ์ ์ ํ๋ ๋ณ์์
์ธ์ ยท๋ฌผ์ ์์์ ํ์ฉํ์ฌ ๊ธด๊ธํ ํ์๋ฅผ ์ฐ์ ์ ์ผ๋ก ์น๋ฃํ๊ฒ ํจ์ผ๋ก์จ, ์ง๋ณ ์น๋ฃ์ ๊ฐ๋ฅ์ฑ ๋ฟ ์๋๋ผ ์ ํ๋ ์๋ฃ ์์์ ํ์ฉ๋๋ฅผ ๊ทน๋ํํ ์ ์๋ค.
์๊ณผ ๋ถ์ผ์์๋ ์์ (fundus) ์ด๋ฏธ์ง์ ๊ด ๊ฐ์ญ ๋จ์ธต ์ดฌ์(Optical Coherence Tomography, ์ดํ OCT) ์ด๋ฏธ์ง๋ฅผ ํ์ฉํ์ฌ
์๊ณผ ์ง๋ณ์ ์ง๋จํ๊ณ ์น๋ฃ ์ํ๋ฅผ ์์ธกํ๊ณ ์๋ค. ๊ตฌ๊ธ ์ฐํ ๋ฅ๋ง์ธ๋(DeepMind)๊ฐ ๊ฐ๋ฐํ AI ์์คํ
์ ๋ง๋ง ์ค์บ ๋ฐ์ดํฐ๋ฅผ ์ด์ฉํด ์๊ตฌ์ ์งํ
๋ฐ ์งํ๋ฅผ 94.5%์ ๋์ ์ ํ๋๋ก ์ง๋จํ ์ ์์ผ๋ฉฐ, ํฅํ ์ค์ ํ์ ์ง๋จ์๋ ์ ์ฉ๋๊ณ ์๋ค.
OCT๋ ๊ทผ์ ์ธ์ ์ ์ฌ์ฉํ์ฌ, ๊ดํ ์ฐ๋ ๋งค์ฒด๋ฅผ ํ์ฉํ์ฌ ๋ง์ดํฌ๋ก๋ฏธํฐ ํด์๋์ 3์ฐจ์ ์ด๋ฏธ์ง๋ฅผ ์บก์ฒํ๋ ์๋ฃ ์์ ๊ธฐ์ ์ด๋ค. ์๊ณผ, ํผ๋ถ๊ณผ, ์ฌ์ฅํ
๋ฑ์ ์ฌ๋ฌ ์๋ฃ ๋ถ์ผ์์ ์ฌ์ฉ๋๊ณ ์์ผ๋ฉฐ, ํนํ ๋ง์ดํฌ๋ก๋ฏธํฐ ํด์๋์ ๋ฐ๋ฆฌ๋ฏธํฐ ์นจํฌ ๊น์ด๊ฐ ํ์ํ ์๊ณผ์ฉ ๋ฐ ๊ธฐํ ์กฐ์ง ์ด๋ฏธ์ง์ ์ ํฉํ๋ค. ์๊ณผ์์๋
์ง๋ฃํ๊ธฐ ์ ๋ง๋ง ๋ด์์ ์์ธํ ์ด๋ฏธ์ง๋ฅผ ์ป์์ผ๋ก, ๋ง๋ง ๊ตฌ์กฐ ๋ฐ ์ํ๋ฅผ ์๊ฐํํ์ฌ ๋
ธํ์ฑ ํฉ๋ฐ ๋ณ์ฑ(Age-related Macular Degeneration,
์ดํ AMD), ๋น๋จ์ฑ ํฉ๋ฐ๋ถ์ข
(Diabetic Macular Edema, ์ดํ DME), ๋๋ฃจ์ (Drusen), ๋น๋จ ๋ง๋ง์ฆ(Diabetic Retinopathy)
๋๋ ๋งฅ๋ฝ๋ง ์ ์ํ๊ด(Choroidal Neovascularization, ์ดํ CNV)๊ณผ ๊ฐ์ ๋ค์ํ ์ํ์ ์ง๋จ์ ๋ด๋ฆฌ๋๋ฐ ์ค์ํ ์ ๋ณด๋ก ์ฌ์ฉ๋๊ณ
์๋ค.
๊ทธ๋ฆผ. 1. OCT ์ด๋ฏธ์ง: (a) AMD (b) DME (c) Drusen
Fig. 1. OCT Image: (a) AMD (b) DME (c) Drusen
๊ทธ๋ฆผ 1์์๋ AMD, DME ๊ทธ๋ฆฌ๊ณ Drusen์ ๋ณ์ฆ์ OCT ์ด๋ฏธ์ง๋ฅผ ๋ณด์ฌ์ฃผ๊ณ ์๋ค. ์ด๋ฌํ ์ง๋ณ์ ๋ํด์๋ ๊ธฐ๊ณํ์ต ๊ธฐ๋ฐ์ ์ธ๊ณต์ง๋ฅ์ด ํ๋ฐํ ์ ์ฉ๋๊ณ
์๋๋ฐ, ํนํ ์ฌ์ธต CNN(Convolution Neural Network)๊ณผ ์ ์ดํ์ต(Transfer Learning)์ ํ์ฉํ์ฌ ์ ์ ๋ฐ์ดํฐ ์๋ก๋
ํ์ต์ ๋น ๋ฅด๊ฒ ํ๋ฉฐ, ๋์ ์์ธก ์ ํ๋๋ฅผ ๊ฑฐ๋๊ณ ์๋ค(1). ํนํ DenseNet121(8)์ ํตํด์๋ OCT ์ด๋ฏธ์ง ์์์ ์์ 3๊ฐ์ง ์ง๋ณ AMD, DME ๊ทธ๋ฆฌ๊ณ Drusen์ ๋ํด์ 95% ์ด์์ ์ ํ๋๋ฅผ ๋ณด์ด๊ณ ์๋ค.
ํ์ง๋ง ์ค์ ํ์์ ์๊ตฌ์์ OCT ์ด๋ฏธ์ง๋ฅผ ์ดฌ์ํ ๋์๋ ๋จ์ผ ์ด๋ฏธ์ง๊ฐ ์๋๋ผ, ๊ทธ๋ฆผ 2์ ๊ฐ์ด ๋ค์(20์ฌ ์ฅ)์ ์ฌ์ง์ด ์ดฌ์๋๋๋ฐ ์ด๋ฌํ ์ฌ์ง๋ค์ ๋ํ ํ๋
์ ๊ธฐ์กด์ ๊ฐ์ฅ ์ ํ๋๊ฐ ๋์ DenseNet121๋ก ์ํํ์ฌ๋ ๋ถ์ผ์นํ๊ฑฐ๋
์์ถฉ๋๋ ๊ฒฐ๊ณผ๋ค์ด ๋๋ถ๋ถ์ด๋ค. ์ ๋ฌธ์์ ํ๋
์ญ์ ๊ฐ OCT ์ด๋ฏธ์ง์ ๋ํ ํ๋
์ ์๋ก ๋ถ์ผ์นํ๊ฑฐ๋ ์์ถฉ๋ ์ ์์ผ๋, ์ ๋ฌธ์์ ํ์ต๊ณผ ๊ฒฝํ์ ํตํด
๋๋ ทํ ํ๋ ๊ฐ์ง ๊ฒฐ๊ณผ๋ฅผ ์ง๋ชฉํ์ฌ ์น๋ฃ ๋ฐฉ๋ฒ์ ์ ํํ๋ค. ํ์ง๋ง ์ฌ์ ํ ๊ธฐ๊ณํ์ต ๊ธฐ๋ฐ์ ์ธ๊ณต์ง๋ฅ์ ์ผ๋ฐ ์๊ณผ ์ ๋ฌธ์๋ค์ด ์ํํ๋ ๋ค์ค OCT ์ด๋ฏธ์ง๋ฅผ
์ฌ์ฉํ ๋จ์ผ ๊ฒฐ๊ณผ๋ฅผ ๋์ถํ์ง ๋ชปํ๊ณ ์๋ค.
๊ทธ๋ฆผ. 2. OCT ์ด๋ฏธ์ง ์ดฌ์
Fig. 2. OCT Image Acquisition
๋ณธ ์ฐ๊ตฌ์์๋ ๋จ์ผ OCT ์ด๋ฏธ์ง๋ค์ ๊ฐ์ง๊ณ ์์ 3๊ฐ ์งํ์ ๋ํด ์ ๋ฌธ์์ ์ง๋จ๊ณผ ์ ์ฌํ ์ข
ํฉ์ ์ธ ํ๋จ์ ๋ด๋ฆด ์ ์๋ ๋ค์ํ ๊ธฐ๊ณํ์ต ํ๋ ์์ํฌ
๋ชจ๋ธ์ ์ ์ํ๊ณ ๊ทธ์ ๋ํ ์ ์ฉ ๊ฒฐ๊ณผ๋ฅผ ์ ์ํ๋ค. ๋ณธ ๋
ผ๋ฌธ์์๋ ์ ์งํ์ ๋ํ 2๋จ๊ณ์ ์ฌ์ธต ๊ธฐ๊ณํ์ต ๋ฐฉ๋ฒ์ ๋ณด์ด๊ณ ์ ํ๋ค. ์ฒซ ๋ฒ์งธ ๋จ๊ณ์์๋
๊ธฐ์กด์ ์ฌ์ธต CNN ๊ธฐ๋ฐ์ DenseNet121์ ์ฌ์ฉํ ๋จ์ผ OCT ์ด๋ฏธ์ง ์ง๋ณ ๋ถ๋ฅ ์ํํ๋ค. ๋ ๋ฒ์งธ ๋จ๊ณ์์๋ ์ค์ ์๊ณผ ์ ๋ฌธ์๋ค์ด ์ง๋จ ๋ด๋ฆฌ๋
๊ฒฐ๊ณผ๋ฅผ ํ์ตํ์ฌ, ์ฒซ ๋ฒ์งธ ๋จ๊ณ์ ๋ถ๋ฅํ ๋ค์์ OCT ์ด๋ฏธ์ง๋ค์ ๋ํ ์ข
ํฉ์ ์ธ ํ๋จ์ ๋ด๋ฆด ์ ์๋ ์์คํ
์ ์ ์ํ๋ค. ๋ณธ ๋
ผ๋ฌธ์์๋ ์ง๋จ ๋ถ๋ฅ๋ฅผ
์ํด 3๊ฐ์ง ์ฌ์ธต ์ ๊ฒฝ๋ง ๋ชจ๋ธ์ธ FC(Fully Connected), LSTM(Long Short-Term Memory) ๊ทธ๋ฆฌ๊ณ CNN์ผ๋ก ๊ตฌํ๋
๋ชจ๋ธ์ ์๊ฐํ๊ณ ๊ฐ๊ฐ์ ๋ชจ๋ธ์ ๋ํ ๋ถ๋ฅ ์ฑ๋ฅ์ ๋น๊ตํ์๋ค.
๋ณธ ๋
ผ๋ฌธ์ ๊ตฌ์ฑ์ ๋ค์๊ณผ ๊ฐ๋ค. 2์ฅ์์๋ OCT ์ด๋ฏธ์ง๋ฅผ ํ์ฉํ ๊ด๋ จ ์ฐ๊ตฌ ๊ธฐ์ ๋ฐ ์ฌ์ธตํ์ต์ ์๋ ์ง๋จ๊ณผ ๊ด๋ จ๋ ๊ธฐ์กด ์ฐ๊ตฌ์ ๋ํ์ฌ ์๊ฐํ๋ค.
3์ฅ์์๋ ๋ณธ ๋
ผ๋ฌธ์์ ์ ์ํ ๋ฐฉ๋ฒ์ธ DenseNet121 ๋ฐ ๋ค์ํ ๊ธฐ๊ณํ์ต ๋ชจ๋ธ์ ํตํด ์๋ ์ง๋จ ์์คํ
์ ์๊ฐํ๋ค. 4์ฅ์์๋ ์๋ ์ง๋จ ์์คํ
์
๋ํ ๊ฒฐ๊ณผ๋ฅผ ๋ถ์ํ๊ณ , ๋ง์ง๋ง์ผ๋ก 5์ฅ์์๋ ๊ฒฐ๋ก ์ ๋ํด ๊ธฐ์ ํ๋ค.
2. ๊ด๋ จ ์ฐ๊ตฌ
2.1 OCT ์ด๋ฏธ์ง๋ฅผ ํ์ฉํ ๊ด๋ จ ์ฐ๊ตฌ ๊ธฐ์
์ต๊ทผ ๋ช ๋
๋์ ๊ธฐ๊ณํ์ต์ด ๋ฐ์ ํ๋ฉด์ ์๋ฃ ์์์ ํ์ฉํ ๋ค์ํ ์ฌ์ธตํ์ต ์ฐ๊ตฌ๊ฐ ์ด๋ฃจ์ด์ง๊ณ ์๋ค(1-6). ์๊ณผ ์๋ฃ ์์์๋ ๋ํ์ ์ผ๋ก ์์ ์ด๋ฏธ์ง์ OCT ์ด๋ฏธ์ง๊ฐ ์๋ค. ์ด ๋ฐ์ดํฐ๋ค์ ํ์ฉํ ์ฐ๊ตฌ์๋ ๋ํ์ ์ผ๋ก ์๋ฃ ์์ ๋ด์์ ์๊ฐ์ ์ผ๋ก ๋๋ฌ๋๋
์ง๋ณ ํน์ง์ ํตํ ์ง๋ณ ์ง๋จ์ด ์๋ค. OCT ๊ด๋ จ ๋ํ ์ฐ๊ตฌ๋ก์, OCT ์ด๋ฏธ์ง ๋ด์ ์์ก๊ณผ ๋ง๋ง ์ธต ๋ถํ (segmentation) ์ฐ๊ตฌ(2), OCT ์ด๋ฏธ์ง์์ ์ง๋ณ ์ฆ์์ด ๋ณด์ด๋ ํน์ง ๋ถ๋ถ ๊ฐ์ง(detection) ์ฐ๊ตฌ(3,6)๊ฐ ์๋ค. ๋ํ, ๊ฐ๋ง๊ณผ ๋ง๋ง ์ฌ์ด์ ๋งฅ๋ฝ๋ง ์์ญ์ ๋ฌด๋ฌ, 2์ฐจ์ ํน์ 3์ฐจ์์ ํํ์ (morphological) ํน์ง์ ์ถ์ถํ๊ณ ์ด๋ฅผ ์๊ณผ์ ์ง๋ณ
์ง๋จ์ ํ์ฉํ๋ ๋ค์ํ ์ฐ๊ตฌ๋ค์ด ์ด๋ฃจ์ด์ง๊ณ ์๋ค(9).
2.2 ์ฌ์ธตํ์ต์ ์๋ ์ง๋จ ์ฐ๊ตฌ
2018๋
cell์ ๋ฅ ๋ฌ๋์ ๊ธฐ๋ฐ์ผ๋ก ์๊ตฌ ์งํ ์ง๋จ ์์คํ
์ ๋ํ Kermany et a.l.(1)์ ๋
ผ๋ฌธ์ ๋ฐํํ์ผ๋ฉฐ, Kermany et al.(1)์์๋ Inception V3 ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ OCT ์ด๋ฏธ์ง ํ ์ฅ์ ๋ํด์ CNV, DME, Drusen๊ณผ ์ ์์ ๋ถ๋ฅํ๋ ์ฐ๊ตฌ๋ฅผ ์ํํ์์ผ๋ฉฐ,
๊ทธ ์ฑ๋ฅ์ 99%์ ์ ํ๋๋ก ํ์ํ๋ค.
Kaymak et al.(6)๋ OCT ์ด๋ฏธ์ง์์ AMD ๋ฐ DME์ ์๋ ๊ฐ์ง์ ๋ํ ์ฐ๊ตฌ๋ฅผ ๋ฐํํ์ผ๋ฉฐ, AMD์ค์์ ๊ฑด์ฑ AMD, ์ต์ AMD๋ฅผ ๋ถ๋ฅํ๊ณ DME๋ฅผ ํฌํจํ์ฌ
์ด 3๊ฐ์ง์ ์ง๋ณ์ ๋ถ๋ฅํ์๋ค. ์ด ์ฐ๊ตฌ ๋ํ OCT ์ด๋ฏธ์ง๋ฅผ AMD ๋ฐ DME ๋ฒ์ฃผ๋ก ๋ถ๋ฅํ๊ธฐ ์ํด ์ต๊ทผ ์ ์๋ AlexNet์ ์ ์ด ํ์ต ๊ธฐ๋ฐ
๋ฐฉ๋ฒ์ ์ฌ์ฉํ์์ผ๋ฉฐ ๊ทธ ๊ฒฐ๊ณผ 97%์ด์์ ์ ํ๋๋ฅผ ๋ฌ์ฑํ์๋ค.
Cecilia et al.(5)๋ AMD ํ์์ OCT ์ด๋ฏธ์ง์ ์ ์ OCT ์ด๋ฏธ์ง๋ฅผ ๊ตฌ๋ณํ๊ธฐ ์ํด ์ฌ์ธต ์ ๊ฒฝ๋ง ๋ชจ๋ธ์ธ VGG16 ๋ชจ๋ธ์ Xavier ์๊ณ ๋ฆฌ์ฆ์ ์ฌ์ฉํ์ฌ ๊ฐ์ค์น๋ฅผ
์ด๊ธฐํํ์ฌ ๋ชจ๋ธ ํ์ต์ ์ํํ์๋ค. ๋ณธ ๋
ผ๋ฌธ์์๋ 93.45%์ ์ ํ๋๋ก 97.45%์ AUC๋ฅผ ๋ฌ์ฑํ์๋ค.
Xiaogang et al.(4)๋ ์ฌ์ ํ๋ จ ๋ ImageNet๊ณผ ์ง์ ๋ฒกํฐ ๋จธ์ (support vector machine)์ ์ฌ์ฉํ์ฌ ์์ ์ด๋ฏธ์ง๋ก ๋ถํฐ ๋น๋จ๋ณ ์ฑ ๋ง๋ง์ฆ(DR,
Diabetic Retinopathy)์ ๋ถ๋ฅํ๋ ๋
ผ๋ฌธ์ ๋ฐํํ๋ค. ๋ณธ ๋
ผ๋ฌธ์์๋ ์ฌ์ ํ๋ จ๋ CNN ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ์์ ์ด๋ฏธ์ง์์ ํน์ง์ ์ถ์ถํ์๊ณ
์ด๋ฌํ ํน์ง ํ๋ผ๋ฏธํฐ ๊ฐ์ ํตํด ์ง์ ๋ฒกํฐ ๋จธ์ (support vector machine)์ ํ๋ จํ์ฌ ์ต์ข
์ง๋จ ๋ชจ๋ธ์ ๊ตฌ์ถํ์๋ค.
๋ํ, Wang et al.(3)๋ 2๊ฐ์ CNN๋ชจ๋ธ์ ํตํด ๋ฏธ์์ ๋ง๋ง๋ณ์ฆ(ROP, Retinopathy of Prematurity)์ ์๋ ์ง๋จํ๋ ๋
ผ๋ฌธ์ ๋ฐํํ๋ค. 5511๊ฐ์
๋ง๋ง ์ฌ์ง ๋ฐ์ดํฐ ์ธํธ๋ฅผ 5 ๋ถํ ๊ต์ฐจ ๊ฒ์ ์ ์ฌ์ฉํ์ฌ CNN์ ํ๋ จํ์์ผ๋ฉฐ, 100๊ฐ์ ์ด๋ฏธ์ง๋ก ๊ตฌ์ฑ๋ ๋
๋ฆฝ์ ์ธ ํ
์คํธ ์ธํธ์์ ์๊ณ ๋ฆฌ์ฆ์ 91%์
์ ํ๋๋ฅผ ๋ฌ์ฑํ์ฌ ๋ฏธ์์ ์ ๋ฌธ๊ฐ์ ๋ง๋ง ๋ณ์ฆ 8๋ช
์ค 6๋ช
์ ๋ฅ๊ฐํ๋ค. ๊ทธ ์ธ์ ๋ง์ ์ง๋ณ ํ๋จ ๋ชจ๋ธ AI ๋ชจ๋ธ์ด ๊ฐ๋ฐ๋๊ณ ์๋ค.
๋ณธ ๋
ผ๋ฌธ์ ์์ ์ธ๊ธํ ์ ํ ์ฐ๊ตฌ๋ค์ ์ฐธ๊ณ ํ์ฌ, Kermany et al.(1)์ ๋จ์ผ OCT ์ด๋ฏธ์ง์ ๋ํ ์ง๋จ์ ํ์์๊ฒ ์ง๋จ์ ๋ด๋ฆด ์ ์๋ ๊ฒ์ด ์๋๋ผ๋ ๋ฌธ์ ๋ก ํ๋จํ์๋ค. ์ด์ ๋ณธ ๋
ผ๋ฌธ์์๋ ๋ค์์ OCT ์ด๋ฏธ์ง๋ค์
๋ํ ์ข
ํฉ์ ์ธ ํ๋จ์ ๋ด๋ฆด ์ ์๋ 2๋จ๊ณ์ ์ฌ์ธต ๊ธฐ๊ณํ์ต ๋ฐฉ๋ฒ์ ์ ์ํ๋ค. 1๋จ๊ณ์์ DenseNet121์ ํ์ฉํ OCT ์ด๋ฏธ์ง ๋ถ์ ์ฐ๊ตฌ๋ฅผ ์ ์ํ๋ค.
2๋จ๊ณ์์๋ ์ฌ๋ฌ OCT ์ด๋ฏธ์ง๋ก๋ถํฐ ์ข
ํฉ์ ์ธ ์ง๋จ ํ, ํ์์๊ฒ ์๊ตฌ ์งํ ์ง๋จํ๋ ์ฐ๊ตฌ๋ฅผ ์ ์ํ๋ค. ๋ํ, ์ฑ๋ฅ ํ๊ฐ๋ฅผ ์ํด ๋ค์ํ ๊ธฐ๊ณํ์ต ๋ชจ๋ธ์
์ฑ๋ฅ ๋น๊ต ๊ฒฐ๊ณผ๋ ์ ์ํ๋ค.
3. ์ฌ์ธตํ์ต ๊ธฐ๋ฒ์ ์ด์ฉํ ์๊ตฌ ์งํ ์ง๋จ
๋ณธ ์ฐ๊ตฌ์์๋ ์๊ตฌ ์งํ ์๋ํ ์ง๋จ ์์คํ
์ ๊ตฌํํ๊ธฐ ์ํด, ์ต๊ทผ ์ด๋ฏธ์ง ์์ ์ฒ๋ฆฌ์ ๋ํ์ฌ ์ฐ์ํ ์ฑ๋ฅ์ ๋ณด์ด๊ณ ์๋ ์ฌ์ธตํ์ต ๊ธฐ๋ฒ์ ์ ์ฉํ์๋ค.
ํนํ OCT ์ด๋ฏธ์ง์์ ์๊ตฌ ์งํ์ ์๊ฐ์ ํน์ง์ ์ถ์ถํ๊ธฐ ์ํด DenseNet์ ์ ์ฉํ์์ผ๋ฉฐ, ์ถ์ถ๋ ํน์ง์ ํตํด ๋ค์ํ ์ฌ์ธตํ์ต ๊ธฐ๋ฒ๋ค์ ์ ์ฉ์์ผ
ํ์์๊ฒ ์ต์ข
์ ์ผ๋ก ์ํ์ ๊ฒฐ์ ์ ๋ณด์กฐํ ์ ์๋ ์๋ํ ์ง๋จ ๋ชจ๋ธ์ 2๊ฐ์ง ๋จ๊ณ๋ก ๊ตฌ์ฑํ์๋ค. ๋ณธ ์ฅ์์๋ ์ ์ํ ๋ชจ๋ธ์ ๋ํ ๊ตฌํ ์ค๋ช
์ ์ํ์ฌ
ํ๋ จ์ ์ฌ์ฉ๋ ๋ฐ์ดํฐ์ ๊ฐ ๋จ๊ณ์์ ์ ์ฉ๋ ์ฌ์ธตํ์ต ๋ชจ๋ธ์ ๊ตฌ์กฐ๋ฅผ ๊ฐ ์ ๋ก ๋๋์ด ๋ค์๊ณผ ๊ฐ์ด ์๊ฐํ๋ค.
3.1 ๋ฐ์ดํฐ ์
๊ตฌ์ฑ
๋ณธ ์ฐ๊ตฌ์์๋ OCT ์ด๋ฏธ์ง๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ์๊ตฌ ์งํ ์๋ํ ์ง๋จ ์์คํ
์ ๊ตฌํํ์๋ค. ์๋ํ ์ง๋จ ์์คํ
์ ๊ตฌ์กฐ๋ ๊ทธ๋ฆผ 3๊ณผ ๊ฐ์ด ๋ ๊ฐ์ง์ ๋จ๊ณ๋ก ๋ชจ๋ธ์ด ๊ตฌ์ฑ๋์ด ์์ผ๋ฉฐ, ๊ฐ ๋จ๊ณ์์ ์ฌ์ฉ๋๋ ๋ฐ์ดํฐ ์
๊ตฌ์ฑ์ ์๊ฐํ๋ค.
์ ๋ฌธ ๊ฒ์ฌ๊ด์ด Spectralis OCT ์ฅ์น(๋
์ผ ํ์ด๋ธ๋ฒ ๋ฅด๊ทธ ์์ฌ์ ํ์ด๋ธ๋ฒ ๋ฅด๊ทธ ์์ง๋์ด๋ง)๋ก ๋ง๋ง OCT๋ฅผ ์ดฌ์ํ์์ผ๋ฉฐ, ์ด ์์คํ
์ ์กฐ์ง์์
3.9m ํฝ์
์ ์ถ ํด์๋์ 5.7m ํฝ์
์ ๊ฐ๋ก ํด์๋๋ก ์ด๋น 40000๊ฐ์ ์ค์บ์ ์ํํ์๋ค. ํฉ๋ฐ์ ์ํ ๋จ๋ฉด ์์ ๋๋ ์์ง ๋จ๋ฉด ์์์ ์ดฌ์ํ๋ค.
์ฐ๋ฆฌ๋ AutoIt๋ก ์์ฑ๋ ์๋ํ ํ๋ก๊ทธ๋จ์ ์ฌ์ฉํ์ฌ ์ด๋ฏธ์ง๋ฅผ BMP ํ์ผ ํ์์ผ๋ก ์ด๋ฏธ์ง๋ฅผ ์์งํ์๋ค. OCT ์ด๋ฏธ์ง๋ ๊ทธ๋ฆผ 2์ ๊ฐ์ด ์ดฌ์ํ์ฌ AMD, DME, Drusen ํ์๋ก๋ถํฐ ์์งํ์๋ค. ๋ํ ํ์ง์ด ๋ฎ์ ๋ฐ์ดํฐ๋ ์ญ์ ํ ๋ฐ์ดํฐ ์ฆ๋๋ฅผ ํตํด์ ๋งค ๋ฐ์ดํฐ ์
์ 27์ฅ์ผ๋ก
์ผ์น์์ผ์ ํ์ต์ ์ํํ์๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ 2๊ฐ์ง์ ๋จ๊ณ๋ก ์ฐ๊ตฌ๋ฅผ ์งํํ์์ผ๋ฉฐ, ์ฒซ ๋จ๊ณ๋ ๊ฐ๋ณ ๋ถ๋ฅ๋ก ๋จ์ผ OCT ์ด๋ฏธ์ง๋ก๋ถํฐ ์ง๋ณ์ ํน์ง์ ์ถ์ถํ์ฌ ๊ฐ ์ด๋ฏธ์ง์ ๋ํ ์๊ตฌ
์งํ์ ์ง๋จ ๋ด๋ฆฌ๋ ๋ชจ๋ธ์ ๊ตฌํํ์๋ค. ์ฒซ ๋ฒ์งธ ๋จ๊ณ์ ๋ชจ๋ธ์ ์ฌ์ฉ๋ ๋ฐ์ดํฐ๋ cell์์ ๋ฐํ๋ Kermany et al.(1)์ ๊ณต๊ฐ ๋ฐ์ดํฐ ์
์ ์ฌ์ฉํ์๊ณ , ๋ฐ์ดํฐ ์
์ ๋ผ๋ฒจ์ด ์๋ฃ๋ ๊ฐ๊ฐ์ ์ด๋ฏธ์ง๊ฐ ์ด 84,484์ฅ์ผ๋ก ๊ตฌ์ฑ๋์ด ์๋ค. ๊ณต๊ฐ ๋ฐ์ดํฐ ์
์ 83,484์ฅ์ผ๋ก
ํ๋ จ์ ์ํค๊ณ , ๋๋จธ์ง 1,000์ฅ์ผ๋ก ๋ณธ ๋ชจ๋ธ์ ํ
์คํธ๋ฅผ ์งํํ์๋ค. ํ๋ จ๋ ๋ชจ๋ธ์ ํตํด ์๊ณผํ์์ ์ ๊ณต๋ OCT ์ด๋ฏธ์ง์ ๋ํด์ ๋ผ๋ฒจ ์์
์ด ์ด๋ฃจ์ด์ก๋ค.
OCT ์ด๋ฏธ์ง๋ ๊ฐ๊ฐ AMD 27,675์ฅ, DME 25,137์ฅ๊ณผ Drusen 18,684์ฅ์ผ๋ก ์ด 71,496์ฅ์ผ๋ก ๊ตฌ์ฑ๋์ด ์๋ค.
๋ ๋ฒ์งธ ๋จ๊ณ๋ ์ง๋จ ๋ถ๋ฅ๋ก์จ, ์ฒซ ๋ฒ์งธ ๋จ๊ณ์ ๋ชจ๋ธ์ ํตํด ๊ฐ ์ด๋ฏธ์ง์ ๋ํ ๋ผ๋ฒจ์ด ์๋ฃ๋ 71,496์ฅ์ ํตํด 27๊ฐ๋ฅผ ํ ๊ฐ์ ๋ฐ์ดํฐ ์
์ผ๋ก
์ค์ ํ์ฌ ์ ๊ฒฝ๋ง์ด ์ข
ํฉ์ ์ผ๋ก ํ๋์ ์ง๋จ์ ํ์์๊ฒ ๋ด๋ฆด ์ ์๋๋ก ํ๋ค. ๋ฐ๋ผ์ ๋ฐ์ดํฐ ์
์ ํ์ ํ ์ฅ์ ์ด๋ฏธ์ง์ ๋ํ AMD, DME, Drusen,
์ ์์ ๊ฐ ํ๋ฅ ์ ์๋ฏธํ๋ฉฐ, ์ด์ 27์ฅ์ ์ด๋ฏธ์ง๋ฅผ ์๋ฏธํ๋ค. ๋ฐ๋ผ์ ๋ ๋ฒ์งธ ๋จ๊ณ์์๋ 27๊ฐ์ ๋ณผ๋ฅจ ๋ฐ์ดํฐ ํ์์ผ๋ก ๊ฐ๊ฐ AMD 1,025๊ฐ,
DME 931๊ฐ์ Drusen 692๊ฐ๋ก ์ด 2,648๊ฐ๋ก ์ด๋ฃจ์ด์ ธ ์๋ค.
3.2 ๋จ์ผ OCT ์ด๋ฏธ์ง ์ง๋จ ๊ฒฐ์ ๋ชจ๋ธ
๊ทธ๋ฆผ. 3. OCT ์ด๋ฏธ์ง๋ฅผ ์ํ 2-Phase ์๋ํ ์ง๋จ ์์คํ
Fig. 3. 2-Phase Automated Diagnostic System for OCT-images
๋ณธ ์ฐ๊ตฌ์์๋ ์๋ก์ด ์ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์ค๊ณํ๋ ๋์ ๊ฒฐ์ ๋ชจ๋ธ์ ์ ๋ฐฉ์๋ DensNet121 ๋คํธ์ํฌ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ์ค๊ณํ์๊ณ , ๊ฒฐ์ ๋ชจ๋ธ์ ํ๋ฐฉ์๋ ๋
๊ฐ์ FC ์ธต๋ค๋ก ์ค๊ณํ์๋ค. ํ๋ฐฉ์ ์ฒซ ๋ฒ์งธ FC ์ธต์ DenseNet121์ผ๋ก๋ถํฐ ์ ๋ฌ๋ฐ์ ์ ๋ณด์ ์ ๋ณด ์์ค์ ์ต์ํํ๊ธฐ ์ํด ์ค๊ณ๋์์ผ๋ฉฐ, ์ง์ญ์
์ต์ (local optimum) ๋ฌธ์ ๋ฅผ ๋ฐฉ์งํ๊ธฐ ์ํด ๋ฐฐ์น ์ ๊ทํ(Batch-Normalization)์ ReLU(rectification) ํ์ฑํ
ํจ์๊ฐ ์ฌ์ฉ๋๋ค. ์ต์ข
FC ์ธต์ ๊ฐ์ฒด(Object)๋ฅผ ๋ถ๋ฅํ๊ธฐ ์ํด ์ค๊ณ๋์์ผ๋ฉฐ, softmax ํ์ฑํ ํจ์๋ฅผ ์ฌ์ฉํ์ฌ ์ต์ข
์ ์ผ๋ก AMD, DME,
Drusen ๋ฐ ์ ์ ์ผ ํ๋ฅ ์ ํํ๋ก ๊ฒฐ๊ณผ(output)๋ฅผ ์ป๊ฒ ๋๋ค.
์
๋ ฅ ์ธต(input)์์๋ ๋จ์ผ OCT ์ด๋ฏธ์ง๊ฐ ํ๋ฐฑ ์ฒ๋ฆฌ๋์ด 3์ฐจ์์ ํํ๋ก ์
๋ ฅ๋๋ฉฐ, ์
๋ ฅ ํฌ๊ธฐ(input size)๋ (None, 299, 299,
3)์ด๋ค.
๊ทธ๋ฆฌ๊ณ ์ถ๋ ฅ ์ธต(output)์ softmax ํ์ฑํ ํจ์๋ฅผ ์ฌ์ฉํ์ฌ ์ต์ข
์ ์ผ๋ก AMD, DME, Drusen ๋ฐ ์ ์ ์ผ ํ๋ฅ ์ ํํ๋ก ๊ฒฐ๊ณผ(output)๋ฅผ
์ป๊ธฐ ๋๋ฌธ์ ์ถ๋ ฅ ํฌ๊ธฐ(output size)๋ (None, 4)์ด๋ค.
DenseNet121์ ์ด 4๊ฐ์ dense block์ผ๋ก ์ด๋ฃจ์ด์ ธ ์๋ค. dense block์ ๋ชจ๋ ๋ ์ด์ด๋ฅผ ์๋ก ์ง์ ์ ์ผ๋ก ์ฐ๊ฒฐํ์ฌ ์ปจ๋ฒ๋ฃจ์
์ ๊ฒฝ๋ง์์ ์ฌ์ฉ๋๋ ๋ชจ๋๋ก์จ, 1x1 ๋ฐ 3x3 ํฌ๊ธฐ์ ์ปค๋์ด ์๋ ๋ ๊ฐ๊ฐ ์๋ค. ๊ทธ๋ฆฌ๊ณ ์ฒซ ๋ฒ์งธ dense block์ 6ํ, ๋ ๋ฒ์งธ๋ 12ํ,
์ธ ๋ฒ์งธ๋ 24ํ, ๋ง์ง๋ง dense block์์๋ 16ํ๋ฅผ ๋ฐ๋ณตํ๋ค.
ํ๋ จ์ ์ฌ์ฉ๋ ์์ค ํจ์(loss function)๋ ๋ค์ค ๋ถ๋ฅ ์์ค ํจ์(categorical cross-entropy)๋ฅผ ์ฌ์ฉํ์๊ณ , ๊ฒฝ์ฌ ํ๊ฐ๋ฒ
์ต์ ํ ์๊ณ ๋ฆฌ์ฆ(Gradient Descent Optimization Algorithm)์ผ๋ก
Adam(10)์ ์ฌ์ฉํ์๋ค. ๋คํธ์ํฌ์ ๋ง์ง๋ง ๋ ๊ฐ์ FC ์ธต์ ์ ์ธํ ๋๋จธ์ง ์ธต๋ค์ ์ฌ์ ํ์ต๋(pre-trained) ๋คํธ์ํฌ์ ๊ตฌ์กฐ๋ก ์ฒซ ๋ฒ์งธ ๋จ๊ณ์ ๋ชจ๋ธ์ด
๊ตฌ์ฑ๋์๋ค.
3.3 One-Hot ์ง๋จ ๊ฒฐ์ ๋ชจ๋ธ
3.2 ์ ์์๋ ๋จ์ผ OCT ์ด๋ฏธ์ง์ ๋ํ ๋ผ๋ฒจ์ด ์๋ฃ๋ ๋ฐ์ดํฐ๋ฅผ ํตํด, 27์ฅ์ ์ด๋ฏธ์ง๋ฅผ ํ๋์ ๋ฐ์ดํฐ ์
์ผ๋ก ์ค์ ํ์ฌ ํ์์๊ฒ ์๊ตฌ ์งํ ์ง๋จ์
๋ด๋ฆด ์ ์๋ ๊ฒฐ์ ๋ชจ๋ธ์ ์ค๊ณํ์๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ NN๋ชจ๋ธ๋ก๋ FC, LSTM์ CNN์ ์ ์ฉํ์ฌ ๊ฐ ๋ชจ๋ธ์ ํน์ง๋ค์ ํ์ฉํ์ฌ ๊ตฌํํ์๋ค. ์ค๊ณ๋ ๋ชจ๋ธ๋ค์ ์
๋ ฅ(input) ๋ฐ์ดํฐ์
ํํ๋ ๋ชจ๋ ๊ฐ์ผ๋ฉฐ, ๋ผ๋ฒจ ๋ฐ์ดํฐ ๋ํ ๊ฐ๋ค.
FC๋ ํ ์ธต์ ๋ชจ๋ ๋ด๋ฐ์ด ๋ค์ ์ธต์ ๋ชจ๋ ๋ด๋ฐ๊ณผ ์ฐ๊ฒฐ๋ ์ํ๋ฅผ ์๋ฏธํ๋ฉฐ ์ ๊ฒฝ๋ง์ ๊ฐ์ฅ ๊ธฐ๋ณธ์ ์ธ ๋คํธ์ํฌ์ด๋ค. ์ด๋ ์ฃผ๋ก CNN์ ํ์ ์ธต์ผ๋ก ์ฐ๊ฒฐ๋์ด
1์ฐจ์ ๋ฐฐ์ด์ ํํ๋ก ๋ณํํ ํ, ์ฃผ๋ก ์ด๋ฏธ์ง๋ฅผ ๋ถ๋ฅํ๋ ๋ฐ ์ฌ์ฉ๋๋ ๊ณ์ธต์ด๋ค. ์ฒซ ๋ฒ์งธ ๋จ๊ณ์์๋ CNN์ ๊ธฐ๋ฐํ ๋ชจ๋ธ์ ๋ฐํ์ผ๋ก ์ด๋ฏธ์ง ์ฒ๋ฆฌ๋ฅผ
ํ์๊ธฐ ๋๋ฌธ์, ํ์ ์ธต์ผ๋ก FC๋ฅผ ์ฌ์ฉํ๋ ๊ฒ์ด ๊ฐ์ฅ ์ผ๋ฐ์ ์ด๋ค. ๋ฐ๋ผ์, ๋ ๋ฒ์งธ ๋จ๊ณ์์ FC์ ๊ธฐ๋ฐ์ผ๋ก ์ ๊ฒฝ๋ง์ ์ค๊ณํ์๋ค.
FC ๋ชจ๋ธ์ ๋คํธ์ํฌ ํฌ๊ธฐ(size)๊ฐ 256์ธ FC ์ธต์ด 5๊ฐ๋ก ์์ฌ ์๊ณ , ํ ์ธต์์ ๋ค์ ์ธต์ผ๋ก ์ ๋ณด๊ฐ ์ ๋ฌ๋๊ธฐ ์ ๋ฐฐ์น ์ ๊ทํ์ ReLU ํ์ฑํ
ํจ์๊ฐ ์ฌ์ฉ๋๋ค. ๋ํ, ์ง์ญ์ ์ต์ ๋ฌธ์ ๋ฅผ ๋ฐฉ์งํ๊ธฐ ์ํด FC ์ธต ์ฌ์ด์ ๋๋กญ์์(dropout)(11)์ด 0.25 ๋น์จ๋ก ์ค์ ํ์์ผ๋ฉฐ, ๋ง์ง๋ง ์ธต์ AMD, DME, Drusen์ ๋ถ๋ฅํ๊ธฐ ์ํด softmax ํ์ฑํ ํจ์๋ฅผ ์ฌ์ฉํ์๋ค. ๋ณธ ๋ชจ๋ธ์ ํ์ดํผ
ํ๋ผ๋ฏธํฐ๋ฅผ ์ฌ๋ฌ ๋ฐฉ๋ฒ์ผ๋ก ์คํ์ ํตํด ์ต์ ์ ๋ชจ๋ธ๋ก ๊ตฌํํ์๋ค. ๋ณธ ๋ชจ๋ธ์ ์ฌ์ฉ๋ ์์ค ํจ์๋ ๋ค์ค ๋ถ๋ฅ ์์ค ํจ์๋ฅผ ์ฌ์ฉํ์๊ณ , ๊ฒฝ์ฌ ํ๊ฐ๋ฒ ์ต์ ํ
์๊ณ ๋ฆฌ์ฆ์ผ๋ก Adam์ ์ฌ์ฉํ์ฌ ๋ชจ๋ธ์ ํ๋ จ์ด ์ด๋ฃจ์ด์ก๋ค.
LSTM์ RNN(Recurrent Neural Network)๋ฅผ ๊ธฐ๋ฐํ ๋ชจ๋ธ๋ก, ์ฌ๋ฌ ๊ฐ์ ์ํ์ค(sequence) ๋ฐ์ดํฐ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ์ตํ๋ค๋
์ ์์ ์๋ฏธ ์๋ ๋ชจ๋ธ์ด๋ค. LSTM์ ์๋์ธต์ ๋ฉ๋ชจ๋ฆฌ ์
์ ์
๋ ฅ ๊ฒ์ดํธ, ๋ง๊ฐ ๊ฒ์ดํธ, ์ถ๋ ฅ ๊ฒ์ดํธ๋ฅผ ์ถ๊ฐํ์ฌ ๋ถํ์ํ ์ ๋ณด๋ ์ง์ฐ๊ณ , ๊ธฐ์ตํด์ผ
ํ ์ ๋ณด๋ค์ ์ ํํ๊ฒ ๋๋ค. ๋ฐ๋ผ์ ๊ธฐ์กด RNN์ ๊ธด ์์กด ๊ธฐ๊ฐ์ผ๋ก ์ธํ ๋ฌธ์ ์ ์ ํด๊ฒฐํ๊ณ , ๊ธด ์ํ์ค์ ์
๋ ฅ์ ์ฒ๋ฆฌํ๋๋ฐ ํ์ํ ์ฑ๋ฅ์ ๋ณด์ธ๋ค.
ํ์ง๋ง LSTM์ ๊ณผ๊ฑฐ ์ํ์ค์ ์ ๋ณด๋ฅผ ํตํด ํ์ฌ ๋ฐ์ดํฐ์ ๋ํ ์ ๋ณด๋ฅผ ์์ธกํ๋ ๊ฒ์ ๊ฐ๋ฅํ ๊ตฌ์กฐ์ด๋, ์ญ๋ฐฉํฅ์ ์ฐ๊ฒฐ์ ์กด์ฌํ์ง ์๊ธฐ ๋๋ฌธ์ ํ์์ ์
์ ๋ณด ์์ธก๋ณด๋ค ๋ฏธ๋ ์์ ์ ์ ๋ณด ์์ธก ์ ํ์ฉํ ์ ์๋ค. ํ์ง๋ง, ์๋ฐฉํญ(Bidirectional)์ ๋จ๋ฐฉํฅ LSTM์ ๊ธฐ๋ฅ์ ์ญ๋ฐฉํฅ์ ๊ธฐ๋ฅ์ ์ถ๊ฐํ
๋ชจ๋ธ๋ก, ์๊ณ์ด ๋ฐ์ดํฐ์ ์๋ฐฉํฅ(์๊ฐ์์)์ ๋ํ์ฌ ์ญ๋ฐฉํฅ(์๊ฐ์ ์ญ์)์ผ๋ก๋ ๋ฐ์ดํฐ๋ฅผ ๋ถ์ํ์ฌ, ์
๋ ฅ ๋ฐ์ดํฐ์ ํน์ ํ ํน์ง์ ๋ํด ๋ถ๋ฅ๋ ์์ธก์ด
๊ฐ๋ฅํ๋ค(12). ์ถ๊ฐ์ ์ผ๋ก, ์๋ฐฉํญ LSTM์ ๊ณผ๊ฑฐ๋ก๋ถํฐ ํ์ฌ์ ์์ธก ์ ๋ณด์ ๋ฏธ๋๋ก๋ถํฐ ํ์ฌ์ ์์ธก ์ ๋ณด๋ฅผ ๊ฐ์ง๊ณ ์์ธก์ ํ๋ฏ๋ก ๊ธฐ์กด LSTM๋ณด๋ค ์ฑ๋ฅ์ด ๋ฐ์ด๋
๊ฒฐ๊ณผ๋ฅผ ๋ณด์ฌ์ค๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ LSTM์์ ๋ค๋ฃจ๋ ์
๋ ฅ ์ํ์ค ๋ฐ์ดํฐ๋ฅผ ์ฐ์์ ์ธ 27์ฅ์ OCT ์ด๋ฏธ์ง๋ก ๊ฐ์ฃผํ๊ณ ์ ๊ฒฝ๋ง์ ์ค๊ณํ์๋ค. ์ค๊ณํ ์ ๊ฒฝ๋ง์ ๋ ๊ฐ ์ธต์
์๋ฐฉํฅ LSTM๊ณผ ๋ ๊ฐ ์ธต์ FC๋ก ์ด๋ฃจ์ด์ ธ ์๋ค. ๋คํธ์ํฌ ํฌ๊ธฐ๋ก LSTM์ ์ฒซ ๋ฒ์งธ ์ธต์ 128, ๋ ๋ฒ์งธ ์ธต์ 256์ผ๋ก ์ค์ ํ์์ผ๋ฉฐ, LSTM๊ณผ
์ฐ๊ฒฐ๋ FC์ ์ฒซ ๋ฒ์งธ ์ธต์ ์ ๋ณด ์์ค์ ์ต์ํํ๊ธฐ ์ํด 128๋ก ์ค์ ํ์๊ณ , ๋ง์ง๋ง ์ธต์ 3์ผ๋ก ์ค์ ํ์๋ค. ๋ํ, ๊ฐ ์ธต ์ฌ์ด์๋ ๋๋กญ์์์ 0.3์ผ๋ก
์ค์ ํ๊ณ , ์ต์ข
์ถ๋ ฅ์ธต์์ AMD, DME์ Drusen์ ๋ถ๋ฅํ๊ธฐ ์ํด softmax ํ์ฑํ ํจ์๋ฅผ ์ฌ์ฉํ์๋ค. ๋ณธ ๋ชจ๋ธ์ ์์ค ํจ์๋ก์จ ํ๊ท ์ ๊ณฑ๊ทผ
ํจ์์ ๊ฒฝ์ฌ ํ๊ฐ๋ฒ ์ต์ ํ ์๊ณ ๋ฆฌ์ฆ์ผ๋ก Adam์ ์ฌ์ฉํ์ฌ ํ๋ จ์ด ์ด๋ฃจ์ด์ก๋ค.
CNN์ 2์ฐจ์ ๋ฐ์ดํฐ์ธ ์ด๋ฏธ์ง๋ก๋ถํฐ ๋ก์ปฌ ๋ถ๋ถ์ ํน์ง์ ์ถ์ถํ๊ธฐ ์ํด, ์ปจ๋ณผ๋ฃจ์
(convolution) ์ธต์ ์ฌ์ฉํ์ฌ ์ง์ ํ์ตํ๊ณ ํจํด์ ์ฌ์ฉํด
์ด๋ฏธ์ง๋ฅผ ๋ถ๋ฅํ๋ค. ์
๋ ฅ์ด ์ฉ์ดํ๊ณ ์ ์ ๋งค๊ฐ๋ณ์๋ก ํ์ตํ๋ค๋ ์ฅ์ ์ด ์์ผ๋ฉฐ, ๊ทธ ์ฑ๋ฅ์ ๋งค์ฐ ํจ๊ณผ์ ์์ด ์
์ฆ๋์๋ค(13). ๊ทธ๋์ ์์ฆ ์์ ๋ฐ์ดํฐ ์ฐ๊ตฌ ๋ถ์ผ์์๋ ๋๋ถ๋ถ CNN ๋ชจ๋ธ์ ๊ธฐ๋ฐ์ ์ ๊ฒฝ๋ง์ ํ์ฉํ๊ณ ์๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ ๋ฐ์ดํฐ ์
์ 2์ฐจ์์ธ ์ด๋ฏธ์ง๋ก ๊ฐ์ฃผํ๊ณ , ๋ฐ์ดํฐ์ ๋ชจ๋ ๊ฐ์ ๊ณ ๋ คํ์ฌ CNN ๋ชจ๋ธ์ ์ ์ฉํ ์ ๊ฒฝ๋ง์ ์ค๊ณํ์๋ค. CNN์ ๋ค๋ฅธ ์ ๊ฒฝ๋ง
๋ชจ๋ธ๋ณด๋ค ์ฑ๋ฅ์ด ๋ฐ์ด๋๊ธฐ์ ์ต๋ํ ๊ฐ๋จํ๊ฒ 4๊ฐ์ ์ธต๊ณผ ๊ฐ ์ธต ์ฌ์ด์ ๋๋กญ์์์ 0.3์ผ๋ก ์ค์ ํ์๋ค. ์ฒซ ๋ฒ์งธ ์ธต๊ณผ ์ธ ๋ฒ์งธ ์ธต์ ๋คํธ์ํฌ ์ฌ์ด์ฆ๋
64๋ก ์ค์ ํ์์ผ๋ฉฐ, ๊ทธ ์ฌ์ด์ ์กด์ฌํ๋ ์ธต์ ๋คํธ์ํฌ ์ฌ์ด์ฆ๋ 256์ผ๋ก ์ค์ ํ์๋ค. ๋ํ, ์ต์ข
์ธต์ ์ ์ธํ ๋ชจ๋ ์ธต์์๋ ํ์ฑํจ์๋ก ReLU๊ฐ
์ฌ์ฉ๋์์ผ๋ฉฐ, ์ต์ข
์ธต์ ํ์ฑ ํจ์๋ก softmax ๋ถ๋ฅ๋ฅผ ์ํํ๊ฒ ๋๋ฉด์ AMD, DME์ Drusen์ ๋ถ๋ฅํ๊ฒ ๋๋ค.
4. ์คํ ๋ฐ ๊ฒฐ๊ณผ
๋ณธ ๋
ผ๋ฌธ์์๋ ๊ธฐ์กด ์ฐ๊ตฌ์ ๋ฌ๋ฆฌ 2 ๋จ๊ณ๋ก ์ฌ๋ฌ ์ฌ์ธตํ์ต ๊ธฐ๋ฐ์ ๋ชจ๋ธ์ ์ ์ํ์์ผ๋ฉฐ, ๋ชจ๋ธ์ ์ฑ๋ฅ์ ํ๊ฐํ๊ธฐ ์ํ์ฌ ๋ค์๊ณผ ๊ฐ์ด ์คํ ๊ฒฐ๊ณผ๋ฅผ ๋น๊ต
๋ถ์ํ์๋ค.
ํ 1. Phase 1, DenseNet121์ ๊ฐ๋ณ ๋ถ๋ฅ์ ์ฑ๋ฅ
Table 1. Phase 1, Performance of individual classification by DenseNet121
Metrics
|
Precision
|
Recall
|
Accuracy
|
F1-score
|
Results
|
1.00
|
1.00
|
99.89
|
1.00
|
ํ 2. Phase 2, ์ง๋จ ๋ถ๋ฅ์ ์ฑ๋ฅ ๋น๊ต
Table 2. Phase 2, Comparison of group classification performance
Algorithm
|
Precision
|
Recall
|
Accuracy
|
F1-score
|
FC
|
0.95
|
0.96
|
95.85
|
0.96
|
BLSTM
|
0.93
|
0.95
|
93.20
|
0.94
|
CNN
|
0.92
|
0.99
|
94.33
|
0.95
|
4.1 ๋ฐ์ดํฐ ๋ฐ ์คํ ํ๊ฒฝ
๋ณธ ๋
ผ๋ฌธ์ ๋ฐ์ดํฐ๋ ์ฐฝ์ ๊ฒฝ์๊ตญ๋ฆฝ๋ํ๊ต ๋ณ์๊ณผ์ ํ๋ ฅํ์ฌ ํ์ ๋ฐ์ดํฐ์ ๋ํ IRB ํ๋ ํ, ์๊ณผ๋ก๋ถํฐ AMD, DME, Drusen ํ์์ OCT
์ด๋ฏธ์ง๋ฅผ ์ฐ๊ตฌ์ ๋ชฉ์ ์ผ๋ก ์์งํ์๋ค. ๋ณธ ์ฐ๊ตฌ์ ๋ฐ์ดํฐ ์
์ ์ด 71,496์ฅ์ OCT ์ด๋ฏธ์ง์ด๋ฉฐ, AMD 27,675์ฅ, DME 25,137์ฅ,
Drusen 18,684์ฅ์ผ๋ก ๊ฐ ์ด๋ฏธ์ง๋ ์ฐ์์ ์ธ 27์ฅ์ ์ด๋ฏธ์ง๋ก ๊ตฌ์ฑ๋๋ค. ๋ํ, ์ฒซ ๋ฒ์งธ ๋จ๊ณ์ DenseNet121 ๋ชจ๋ธ์ ํ์ต์ํค๊ธฐ ์ํด
Kermany et al.(1)์์ ์ ๊ณตํ ๊ณต๊ฐ ๋ฐ์ดํฐ ์
์ ์ฌ์ฉํ์๋ค. ๊ณต๊ฐ ๋ฐ์ดํฐ ์
์ ์ด 84,484์ฅ์ผ๋ก, ๊ฐ CNV 37,455์ฅ, DME 11,598์ฅ, Drusen
8,866์ฅ, Normal 26,565์ฅ์ผ๋ก ๊ตฌ์ฑ๋๋ค. ์ ๊ฒฝ๋ง์ Google์ Tensorflow ๋ฒ์ 2.0์ ํตํด ๊ตฌํํ์์ผ๋ฉฐ ๋ ๊ฐ์ NVIDIA
GeForce RTX 2080 Ti GPU๋ฅผ ์ฌ์ฉํ๋ Window10 ์์์ python์ผ๋ก ๊ตฌํํ์๋ค.
4.2 ๋จ์ผ OCT ์ด๋ฏธ์ง ์ง๋จ ๊ฒฐ์ ๋ชจ๋ธ์ ์ฑ๋ฅ
๋ณธ ๋
ผ๋ฌธ์์๋ ์ฌ์ฉ๋ ๋ชจ๋ธ์ DenseNet121 ๋ชจ๋ธ๋ก, ๊ทธ๋ฆผ 3์ ์ฒซ ๋ฒ์งธ ๋จ๊ณ์ด๋ค. ํ์ต์ 100 epoch, ํ์ต๋ฅ (learning rate)์ 0.001๋ก ์ค์ ํ์ฌ ์คํ์ ์ํํ์๋ค. ๋ํ, ํ๋ จ ์ 40
epoch๊น์ง ๋ชจ๋ธ์ ํ๋ จ์ด ์งํ๋์์ผ๋ฉฐ ์ดํ ๋ชจ๋ธ์ ๋ณ๋(fluctuation)์ ๋ฐฉ์งํ๊ธฐ ์ํ ์์ ํ ํ๋ จ์ด ์งํ๋์๋ค. 100 epoch์ ๊ธฐ์ค์ผ๋ก
๊ทธ ์ด์ ๋ฐ๋ณต ํ๋ จ์์ผ๋ ๋ ๋์ ์ฑ๋ฅ์ ๋ณด์ด์ง ์์์์ ํ์ธํ์๋ค. ๋ณธ ๋ชจ๋ธ์ ํ์ต์ ์ํด ์ฌ์ฉํ ๋ฐ์ดํฐ๋ Kermany et al.(1)์์ ์ ๊ณตํ 84,484์ฅ์ด๋ฉฐ, ํ์ต ๋ฐ์ดํฐ 83,484์ฅ๊ณผ ํ
์คํธ ๋ฐ์ดํฐ 1,000์ฅ์ผ๋ก ๋ถ๋ฅ๋์ด ์๋ค. ๋ฐ๋ผ์ 83,484์ฅ์ ํตํด ๋ชจ๋ธ์ ํ์ต์
์ํํ์์ผ๋ฉฐ 1,000์ฅ์ ํตํด ํ
์คํธ๋ฅผ ์ํํ์๋ค.
๊ทธ๋ฆผ. 4. Phase 2์ ROC curve
Fig. 4. ROC curve of Phase 2
๋จ์ผ OCT ์ด๋ฏธ์ง ํ์ต์ ๋ํด์ ์ง๋จ์ ์ฑ๋ฅ์ ํ๊ฐํ๊ธฐ ์ํด ๊ฐ ์งํ ๋น 250์ฅ์ฉ ์ด 1,000์ฅ์ ๋ฐ์ดํฐ๋ก ํ
์คํธ๋ฅผ ์ํํ์๋ค. ํ 1์์ ์ ๋ฐ๋, ์ฌํ์จ, ์ ํ๋ ๋ฐ F1-์ ์๊ฐ ์๊ตฌ ์งํ ์๋ํ ์ง๋จ ์์คํ
์๊ณ ๋ฆฌ์ฆ์ ์ฑ๋ฅ์ ๋ณด์ฌ์ค๋ค. ์ฑ๋ฅ ๋น๊ต๋ ๊ฐ ๋ถ๋ฅ์ ๊ฒฐ๊ณผ ๊ฐ์ ํ๊ท ํ์๋ค.
๋จ์ผ OCT ์ด๋ฏธ์ง ์ง๋จ ๊ฒฐ์ ๋ชจ๋ธ์ธ DenseNet121์ ์ ๋ฐ๋, ์ฌํ์จ ๊ทธ๋ฆฌ๊ณ F1-์ ์๋ 1.00, ์ ํ๋๋ 99.89๋ก์ ๋งค์ฐ ๋์ ์ ํ๋๋ฅผ
์ป์ ์ ์์๋ค. ์ด๋ ๊ฒ ๋์ ์ ํ๋๋ฅผ ์ป์ ์ ์์๋ ์ด์ ๋ DenseNet121์ ๋ชจ๋ธ์ Densely connection์ ์ด์ฉํ์ฌ ๊ฐ ๊ณ์ธต์
์ถ๋ ฅ์ธ ํผ์ฒ๋งต(feature map)์ ์ด์ด์ง๋ ๊ฐ ๊ณ์ธต์ ์
๋ ฅ๊ณผ concatenation ์ฐ์ฐ์ ์ํํ์ฌ ํน์ง ์ ํ๋ฅผ ๊ฐํํ๋ค๋ ์ฅ์ ์ ๊ฐ์ง๊ณ ์์ผ๋ฉฐ,
๋ํ ์ด 83,484์ ๋ง์ ๋ฐ์ดํฐ๋ก ํ๋ จ์ ์ํํ์๊ธฐ์ ๋์ ์ ํ๋๋ฅผ ์ป์์ ๊ฒ์ผ๋ก ํ๋จ๋๋ค. ๊ทธ๋ฆฌ๊ณ DenseNet121์ AUC(Area under
an ROC curve)๋ 1.00์ด์๋ค.
DenseNet121์ ํตํด์ ํ ํ์์ ๋ํ ์ฌ๋ฌ ์ฅ์ ๊ฐ OCT ์ด๋ฏธ์ง์ ๋ํด ๋ณ์ฆ์ ๋ํ ํ๋
๊ฒฐ๊ณผ๋ฅผ ํ๋ฅ ๊ฐ์ ์ป์ด์ ์ด๋ฅผ ๊ทธ๋ฆผ 3์ Phase 1์ ์ถ๋ ฅ์ฒ๋ผ ํ๋ฅ ๊ฐ์ ๋งคํธ๋ฆญ์ค๋ก ๋ง๋ค์ด Phase 2์ ์
๋ ฅ์ผ๋ก ์ฌ์ฉํ์๋ค.
4.3 One-Hot ์ง๋จ ๊ฒฐ์ ๋ชจ๋ธ์ ์ฑ๋ฅ
4.2 ์ ์ ์คํ ๊ฒฐ๊ณผ๋ฅผ ํตํด, ๋ณธ ์ฅ์์๋ ๋ผ๋ฒจ์ด ์๋ฃ๋ ๋จ์ผ OCT ์ด๋ฏธ์ง๋ฅผ 27์ฅ์ฉ ๋ฌถ์ด ํ๋์ ๋ฐ์ดํฐ ์
์ผ๋ก ์ค์ ํ์ฌ ์คํ์ ์ํํ์๋ค. ์ฐฝ์
๊ฒฝ์๋๋ณ์์ผ๋ก๋ถํฐ ์์งํ ์ด๋ฏธ์ง ๋ฐ์ดํฐ ์
์ ์ด 71,496์ฅ์ด๋ฉฐ, ๋ฐ๋ผ์ ๋ณธ ์ฅ์์ ์ฌ์ฉ๋ ๋ฐ์ดํฐ ์
์ 2,648๊ฐ์ด๋ค. 2,648๊ฐ์ ๋ฐ์ดํฐ ์
์ค AMD 1,025๊ฐ, DME 931๊ฐ์ Drusen 692๊ฐ๋ก ์ด๋ฃจ์ด์ ธ ์๋ค. ํ์ง๋ง, ๋ค์ํ ์ฌ์ธตํ์ต ๋ชจ๋ธ๋ค์ ํ์ต์ํค๊ธฐ์๋ ๋ฐ์ดํฐ ์
์ ๋ถ์กฑ์ผ๋ก
์ด ๋ฐ์ดํฐ ์
์ 90%๋ ํ๋ จ ๋ฐ์ดํฐ ์
์ผ๋ก ์ค์ ํ๊ณ ๋๋จธ์ง๋ ํ
์คํธ ๋ฐ์ดํฐ ์
์ผ๋ก ์ค์ ํ์ฌ ์ฐ๊ตฌ๋ฅผ ์ํํ์๋ค. ๋ ๋ฒ์งธ ๋จ๊ณ์์ ์ํํ ์คํ์ FC,
LSTM์ CNN ๋ชจ๋ธ๋ก ์ํํ์์ผ๋ฉฐ, ๋ชจ๋ ๋ชจ๋ธ์ ๋ฐ์ดํฐ ์
์ ์ค์ ์ ๊ฐ๊ฒ ์ค์ ํ์๋ค.
FC ๋ชจ๋ธ์ 1000 epoch, ํ์ต๋ฅ (learning rate)๋ 0.00001 ๊ทธ๋ฆฌ๊ณ ์์ค ํจ์๋ categorical crossentropy๋ก
์ค์ ํ์ฌ ์คํ์ ์ํํ์๋ค. ํ์ ์ง๋จ ๊ฒฐ์ ๋ชจ๋ธ ์ค ํ๋์ธ FC๋ ์ ๋ฐ๋ 0.95, ์ฌํ์จ 0.96, ์ ํ๋๋ 95.85 ๊ทธ๋ฆฌ๊ณ F1-์ ์๋ 0.96์
์ป์๋ค. ๋ํ, ๊ทธ๋ฆผ 4๋ฅผ ํตํด FC์ AUC๋ 0.99๋ฅผ ์ป์์์ ํ์ธํ ์ ์๋ค. ๋ณธ ๋ชจ๋ธ์ ํ์ต์ epoch์ 200๊น์ง๋ ํ์ต์ด ๋น ๋ฅด๊ฒ ๋์์ผ๋ฉฐ, 200 ์ด์๋ถํฐ๋
์ฒ์ฒํ ํ์ต๋จ์ ๋ณผ ์ ์๋ค.
BLSTM ๋ชจ๋ธ์ 300 epoch, ํ์ต๋ฅ (learning rate)๋ 0.001 ๊ทธ๋ฆฌ๊ณ ์์ค ํจ์๋ MSE(Mean Square Error)๋ก
์ค์ ํ์ฌ ์คํ์ ์ํํ์๋ค. BLSTM์ ์ ๋ฐ๋ 0.93, ์ฌํ์จ 0.95, ์ ํ๋๋ 93.20 ๊ทธ๋ฆฌ๊ณ F1-์ ์๋ 0.94๋ฅผ ์ป์๋ค. ๋ํ, ๊ทธ๋ฆผ 4๋ฅผ ํตํด BLSTM์ AUC๋ 0.99๋ฅผ ์ป์์์ ํ์ธํ ์ ์๋ค. FC ๋ชจ๋ธ๊ณผ CNN ๋ชจ๋ธ๊ณผ ๋ฌ๋ฆฌ, BLSTM ๋ชจ๋ธ์ ํ์ต ์๊ฐ์ด 3๋ถ์์ 5๋ถ์ด
์ข ๋ ๊ฑธ๋ ธ๊ณ ์ ํ๋๋ฅผ ๊ธฐ์ค์ผ๋ก ์ฑ๋ฅ์ด ์ฝ 1%์ ๋ ์ฐจ์ด๋จ์ ํ์ธํ์๋ค.
CNN ๋ชจ๋ธ์ 1000 epoch, ํ์ต ์๋(learning rate)๋ 0.0001 ๊ทธ๋ฆฌ๊ณ ์์ค ํจ์์ MSE(Mean Square Error)๋ก
์ค์ ํ์ฌ ์คํ์ ์ํํ์๋ค. CNN์ ์ ๋ฐ๋ 0.92, ์ฌํ์จ 0.99, ์ ํ๋๋ 94.33 ๊ทธ๋ฆฌ๊ณ F1-์ ์๋ 0.95๋ฅผ ์ป์๋ค. ๋ํ, ๊ทธ๋ฆผ 4๋ฅผ ํตํด CNN์ AUC๋ 0.95๋ฅผ ์ป์์์ ํ์ธํ ์ ์๋ค.
๋ง์ง๋ง์ผ๋ก ์ ๊ฒฝ๋ง์ ์ฑ๋ฅ์ ์ฌ์ฉ๋ ํ์ต ๋ฐ์ดํฐ์ ํ์ต ๋ฐ ํ
์คํธ ๊ณผ์ ์์ ์ธ๋ถ์ ์ฐจ์ด๋ก ์ธํด ์ฑ๋ฅ์ด ์กฐ๊ธ์ฉ ์ฐจ์ด๋ฅผ ๋ณด์ผ ์ ์๋ค. ๋ฐ๋ผ์ ์ค๊ณ๋ ์ฌ์ธตํ์ต
๋ชจ๋ธ๋ค์ ์ฑ๋ฅ์ ์ ํํ ๋ถ์ํ๊ณ ๋น๊ตํ๊ธฐ ์ํด, ๊ฐ ๋ชจ๋ธ๋ค์ 10๋ฒ์ฉ ์ฌํ์ตํ๊ณ ํ
์คํธ๋ฅผ ์ํํ์๋ค. ํ๋ ๊ฐ ๋ชจ๋ธ์ 10๋ฒ์ฉ ํ
์คํธํ์ฌ ์ ํ๋์
ํ๊ท ๋ธ ๊ฒฐ๊ณผ์ด๋ฉฐ, FC ๋ชจ๋ธ์ 95.89%, BLSTM ๋ชจ๋ธ์ 93.20%์ด๋ฉฐ CNN 94.33%๋ก ๋ชจ๋ ๋ชจ๋ธ์ด 90% ์ด์ ์ ํ๋์ ๊ฒฐ๊ณผ๋ฅผ ๋๋ค.
๊ฐ ๋ชจ๋ธ์ ์ฑ๋ฅ์์ 1%์์ 2% ์ ๋์ ์ฐจ์ด๊ฐ ์์ง๋ง ์ ํ์ฑ ๊ธฐ์ค FC์ ์ฑ๋ฅ์ด ๋ค๋ฅธ DNN (Deep Neural Network) ๋ชจ๋ธ์ ๋นํด
์ข์๋ค.
์ผ๋ฐ์ ์ผ๋ก ์ด๋ฏธ์ง ๋ถ๋ฅ๋ CNN์ด FC์ ๋นํด์ ์ข์ ์ฑ๋ฅ์ ๋ณด์ธ๋ค. ํ์ง๋ง ๋ณธ ๋
ผ๋ฌธ์์ ์ง๋จ ๋ถ๋ฅ์์ ์ฌ์ฉํ๋ ์
๋ ฅ ๋ฐ์ดํฐ๋ 27 x 4์ ๋ฐ์ดํฐ๋ก์
๋น๊ต์ ๋จ์ํ๋ค. ๊ทธ๋ฆฌ๊ณ CNN์ FC์ ๋นํด ๋ ๋ณต์กํ ๋ด๋ด๋คํธ์ํฌ๋ฅผ ๊ตฌ์ฑํ๋ค. DNN (Deep Neural Network)์ ํ๋ จ ์, FC๋ณด๋ค
CNN์ ์ ํ๋๊ฐ ๋๊ฒ ๋์ค๋ ๊ฒ์ฆ ๋ฐ์ดํฐ๋ฅผ ํ
์คํ
ํ ๊ฒฝ์ฐ CNN์ ์ ํ๋๊ฐ FC๋ณด๋ค ๋ค์ ๋ฎ๊ฒ ๋์ค๋ ๊ฒ์ ๊ด์ฐฐํ ์ ์์๋ค. ๋ฐ๋ผ์ ๋ณต์กํ DNN์
์ฌ์ฉํ๋ฉด์ ๋ฐ์ํ๋ ๊ณผ์ ํฉ์ด ๋ฐ์ํ์ฌ ๊ฒ์ฆ ๋ฐ์ดํฐ์ ๋ํ FC์ ์ ํ๋๊ฐ ๋ ๋๊ฒ ๋์จ ๊ฒ์ผ๋ก ๋ณด์ธ๋ค.
5. ๊ฒฐ ๋ก
์๋ฃ ๋ถ์ผ์์๋ ์ง๋จ์ ์ํด ์๋ฃ ์์ ๋ฐ์ดํฐ๊ฐ ํ์ํจ์ ๋ฐ๋ผ์ ์๋ฃ ์์ ๋ฐ์ดํฐ๋ฅผ ์ ์ฉํ ์ปดํจํฐ ๋น์ (vision) ๋ถ์ผ์์์ ์ฐ๊ตฌ๊ฐ ํ๋ฐํ ์ด๋ฃจ์ด์ง๊ณ
์๋ค. ๋ณธ ๋
ผ๋ฌธ์์๋ ๋ํ OCT ์ด๋ฏธ์ง๋ผ๋ ์๋ฃ ์์ ๋ฐ์ดํฐ๋ฅผ ์ ์ฉํ์ฌ ๋ค์ํ ์ฌ์ธตํ์ต ๊ธฐ๋ฒ์ ํตํด ์ฐ๊ตฌ๋ฅผ ์ํํ์๋ค. ์์์ ์๊ณผ ์ ๋ฌธ์๋ค์ ๋จ์ผ
OCT ์ด๋ฏธ์ง๊ฐ ์๋ ์ฌ๋ฌ ์ฅ์ OCT ์ด๋ฏธ์ง๋ค์ ์ข
ํฉ์ ์ผ๋ก ์ดํด๋ณธ ํ, ํ์์๊ฒ ์ง๋จ์ ๋ด๋ฆฐ๋ค. ์ด์ ๋ณธ ์ฐ๊ตฌ๋ ๊ธฐ์กด์ ๋ค๋ฅธ ๋
ผ๋ฌธ๊ณผ ๋ฌ๋ฆฌ ์ฌ๋ฌ ์ฅ์
์ด๋ฏธ์ง๋ฅผ ํตํด ํ ํ์์๊ฒ ์ง๋จ์ ๋ด๋ฆด ์ ์๋ ์์คํ
์ ๊ตฌ์ถํ์๋ค. 1๋จ๊ณ์์ DenseNet121 ๋ชจ๋ธ(8)์ ํตํด ๋จ์ผ OCT ์ด๋ฏธ์ง๋ก๋ถํฐ ์ง๋ณ์ ์๊ฐ์ ํน์ง์ ๋ถ์ํ์ฌ AMD, DME, Drusen๊ณผ Normal์ ์๋ณํ ์ ์์์ ๋ณด์๋ค.
๋ํ, 1๋จ๊ณ์ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก 2๋จ๊ณ์์๋ FC, BLSTM๊ณผ CNN์ ๋ชจ๋ธ์ ํตํด ์ฌ๋ฌ ์ฅ์ OCT ์ด๋ฏธ์ง๋ค์ ์ ๋ณด๋ฅผ ํตํด ์ข
ํฉ์ ์ผ๋ก ํ๋จ ํ
ํ์์ ์งํ์ ์๋ณํ ์ ์์์ ํ์ธํ์๋ค. FC์ ์ ํ๋๋ 95.85%์ด๊ณ ๋ค๋ฅธ ๋ชจ๋ธ์ ์ ํ๋์ ๋น๊ตํด์ ๊ฐ์ฅ ์ฑ๋ฅ์ด ๋ฐ์ด๋ฌ์์ ํ์ธํ์๋ค.
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No.NRF-2020R1A2C1014855), Regional Innovation Strategy
(RIS) through the National Research Foundation of Korea(NRF) funded by the Ministry
of Education(MOE), and the BK21 plus program through the National Research Foundation
(NRF) funded by the Ministry of Education of Korea (No.5120201013786).
References
D. S. Kermany, M. Goldbaum, W. Cai, C. C. Valentim, H. Liang, S. L. Baxter, A. McKeown,
G. Yang, X. Wu, F. Yan, 2018, Identifying medical diagnoses and treatable diseases
by image-based deep learning, Cell, Vol. 172, No. 5, pp. 1122-1131
J. Kugelman, D. Alonso-Caneiro, S. A. Read, J. Hamwood, S. J. Vincent, F. K. Chen,
M. J. Collins, 2019, Automatic choroidal segmentation in oct images using supervised
deep learning methods, Scientific reports, Vol. 9, No. 1, pp. 1-13
J. Wang, R. Ju, Y. Chen, L. Zhang, J. Hu, Y. Wu, W. Dong, J. Zhong, Z. Yi, 2018, Automated
retinopathy of prematurity screening using deep neural networks, EBioMedicine, Vol.
35, pp. 361-368
X. Li, T. Pang, B. Xiong, W. Liu, P. Liang, T. Wang, 2017, Convolutional neural networks
based transfer learning for diabetic retinopathy fundus image classi๏ฌcation, in 2017
10th international congress on image and signal processing biomedical engineering
and informatics (CISP-BMEI), pp. 1-11
C. S. Lee, D. M. Baughman, A. Y. Lee, 2017, Deep learning is effective for classifying
normal versus age-related macular degeneration oct images, Ophthalmology Retina, Vol.
1, No. 4, pp. 322-327
S. Kaymak, A. Serener, 2018, Automated age-related macular degeneration and diabetic
macular edema detection on oct images using deep learning, in 2018 IEEE 14th International
Conference on Intelligent Computer Communication and Processing (ICCP), pp. 265-269
E. Strickland, 2019, Ibm watson, heal thyself: How ibm overpromised and underdelivered
on ai health care, IEEE Spectrum, Vol. 56, No. 4, pp. 24-31
G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, 2017, Densely connected convolutional
networks, in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 4700-4708
B. Tan, A. Wong, K. Bizheva, 2018, Enhancement of morphological and vascular features
in oct images using a modi๏ฌed bayesian residual transform, Biomedical optics express,
Vol. 9, No. 5, pp. 2394-2406
D. P. Kingma, J. Ba, 2014, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, 2014, Dropout:
a simple way to prevent neural networks from over๏ฌtting, The journal of machine learning
research, Vol. 15, No. 1, pp. 1929-1958
M. Schuster, K. Paliwal, 1997, Bidirectional recurrent neural networks, IEEE Transactions
on Signal Processing, Vol. 45, No. 11, pp. 2673-2681
P. Y. Simard, D. Steinkraus, J. C. Platt, 2003, Best practices for convolutional neural
networks applied to visual document analysis, in Icdar, Vol. 3
์ ์์๊ฐ
Jiyeon Kim graduated from Gyeongsang National University in 2020.
She is pursuing master degree at the Dept of AI Convergence Engiering(BK21), Gyeongsang
National University in 2020.
Her research interests includes Machine Learning, and Medical AI.
Yongseop Han graduated from Gyeongsang National University in 2001.
He received Master and Ph.D. degree in the same university in 2005 and 2013, respectively.
He worked as an ophthalmologist at Gyeongsang National University Hospital from 2009,
and he joined College of Medicine Gyeongsang National University in 2012 as an associate
professor.
His research interest includes Retina, Uvea, and Vitreous.
Woongsup Lee received a B.S. and a Ph.D. in electrical engineering from KAIST in 2006
and 2012, respectively.
Since 2014, he has been working in the Department of Information and Communication
Engineering of Gyeongsang National University, South Korea, where he is now an Associate
professor.
Taeseen Kang graduated from Chungnam National University in 2010.
He received Mater degree in the same university in 2016.
He worked as an ophthalmologist at Gyeongsang National University Changwon Hospital
from 2019 as an assistant professor.
His research interest includes Cornea, and Oculoplastics.
Seongjin Lee graduated from Hanyang University in 2006.
He recieved Master and Ph.D. degree in the same university in 2008 and 2015, respectively.
He worked as postdoc in Storage Center Hanyang University till 2017 and became an
assistant research professor there.
He joined Gyeongsang National University in 2017 as an assistant professor.
His research interest includes Operating System, Storage System, System Optimization,
Avionics, and Machine Learning.
๊น๊ฒฝํ (Kyong Hoon Kim)
Kyong Hoon Kim received the B.S., M.S., and Ph.D. degrees in computer science and
engineering from POSTECH, Pohang, South Korea, in 1998, 2000, and 2005, respectively.
From 2005 to 2007, he was a Post-Doctoral Research Fellow with the CLOUDS Laboratory,
Department of Computer Science and Software Engineering, University of Melbourne,
Australia.
He is currently a professor in School of Computer Science and Engineering, Kyungpook
National University, Daegu, South Korea.
From 2007 to 2019, he was a professor in the Department of Informatics, Gyeongsang
National University, Jinju, South Korea.
His current research interests include real-time systems, cloud computing, avionics
software, and security.
์ด์์ญ (Yeongseop Lee)
Youngseop Lee graduated from Gyeongsang National University in 2020.
He is pursuing master degree at the Dept of Information Science, Gyeongsang National
University in 2020.
His research interests includes Machine Learning, Neural Network, Image Generation,
and Image Processing.
Jin Hyun Kim received the Ph.D. degree from the Department of Computer Science and
Engineering, Korea University, Seoul, South Korea, in 2011.
He was a Post-Doctoral Fellow with the KAIST, Daejeon, South Korea, and Aalborg University,
Denmark.
He was a Researcher with INRIA/IRISA, Rennes, France.
From 2014 to 2019, he was a Post-Doctoral Fellow with the University of Pennsylvania,
Philadelphia, PA, USA.
Since 2019, he has been an assistant professor in Department of Information and Communication
Engineering, Gyeongsang University, South Korea.
His current research interests include cyber physical systems, realtime systems, machine
learning for medical and vehicular autonomy systems.