• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Metropolitan and Urban Transport, Korea Transport Institute, Korea)



Electric Vehicle, Charging infrastructure, Charging pattern, Latent class analysis, Affecting factors

1. ์„œ ๋ก 

์ „๊ธฐ์ž๋™์ฐจ ์ „ํ™˜ ์ •์ฑ…์€ ์ˆ˜์†ก๋ถ€๋ฌธ ํƒ„์†Œ์ค‘๋ฆฝ์„ ์‹คํ˜„ํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ดํ–‰๋ฐฉ์•ˆ ์ค‘ ํ•˜๋‚˜๋‹ค. ๊ตญ๋‚ด ํƒ„์†Œ์ค‘๋ฆฝ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” 2050๋…„๊นŒ์ง€ ๋„๋กœ์šด์†ก์ˆ˜๋‹จ์˜ ์ „๊ธฐ์ฐจ์™€ ์ˆ˜์†Œ์ฐจ ๋น„์ค‘์„ ์ตœ๋Œ€ 97%๊นŒ์ง€๋กœ ์„ค์ •ํ•œ ์ƒํƒœ๋‹ค(1). ํ˜„์žฌ ํ™”์„์—ฐ๋ฃŒ ์ค‘์‹ฌ ์ž๋™์ฐจ ์‹œ์žฅ์„ ์ „๊ธฐ์ฐจ์™€ ์ˆ˜์†Œ์ฐจ๋กœ ์ „ํ™˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฌด์—‡๋ณด๋‹ค ์•ˆ์ •์ ์ธ ์—ฐ๋ฃŒ์ธํ”„๋ผ ๊ณต๊ธ‰์ด ์ค‘์š”ํ•  ๊ฒƒ์ด๋‹ค.

๊ตญ๋‚ด ์ „๊ธฐ์ฐจ ์ถฉ์ „์ธํ”„๋ผ ์—ฌ๊ฑด์„ ์‚ดํŽด๋ณด๋ฉด ๊ณต๊ณต์ถฉ์ „์ธํ”„๋ผ ๊ณต๊ธ‰ ์ˆ˜์ค€์€ ๋‹ค๋ฅธ ๊ตญ๊ฐ€๋“ค๊ณผ ๋น„๊ตํ•  ๋•Œ ๋งค์šฐ ์–‘ํ˜ธํ•˜๋‹ค. 2021๋…„ 8์›” ๊ธฐ์ค€ ๊ณต์šฉ์ถฉ์ „๊ธฐ๋Š” 9๋งŒ๊ธฐ ์ด์ƒ์œผ๋กœ ์ „๊ธฐ์ฐจ 2๋Œ€๋‹น 1๊ธฐ ์ˆ˜์ค€์ด๋ฉฐ, ์ด ์ค‘ ์•ฝ 15%๊ฐ€ 50kW๊ธ‰ ์ด์ƒ ๊ธ‰์†์ถฉ์ „๊ธฐ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค(2). ๊ทธ๋Ÿฌ๋‚˜ ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „์ธํ”„๋ผ์˜ ๊ฒฝ์šฐ ๊ณต๋™์ฃผํƒ ๋น„์ค‘์ด ๋†’๊ณ  ๋…ธํ›„์ฃผํƒ ์ฃผ์ฐจ ๋ฌธ์ œ๊ฐ€ ์‹ฌ๊ฐํ•œ ์ฃผ๊ฑฐ ํ™˜๊ฒฝ์œผ๋กœ ์ธํ•ด ์›ํ™œํ•œ ๊ณต๊ธ‰์ด ์–ด๋ ค์šด ์ƒํ™ฉ์ด๋‹ค.

์•ž์œผ๋กœ ์ถฉ์ „์ธํ”„๋ผ ํ™•๋Œ€ ๊ณผ์ •์—์„œ ๋…ผ์˜๋ผ์•ผ ํ•˜๋Š” ๋˜ ๋‹ค๋ฅธ ํ˜„์•ˆ์€ ๊ธ‰์†์ถฉ์ „์„ค๋น„์˜ ์ ์ • ๊ทœ๋ชจ๋‹ค. ๊ตญ๋‚ด์—์„œ๋Š” ๊ธ‰์†์ถฉ์ „๊ธฐ ์ค‘์‹ฌ์œผ๋กœ ๊ณต์šฉ์ธํ”„๋ผ๋ฅผ ๊ตฌ์ถ•ํ•ด์™”์œผ๋‚˜, ์ดˆ๊ธ‰์† ์ถฉ์ „์‹œ์Šคํ…œ์ด ๋“ฑ์žฅํ•˜๊ณ  ์ ์ฐจ ์ „๊ธฐ์ฐจ๊ฐ€ ๋Œ€ํ˜•ํ™”๋˜๋ฉด์„œ ์—๋„ˆ์ง€์™€ ๊ฒฝ์ œ์„ฑ ์ธก๋ฉด์—์„œ ์ง€์†๊ฐ€๋Šฅ์„ฑ ๋ฌธ์ œ๊ฐ€ ์ œ๊ธฐ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์žฅ๋ž˜ ์ „๊ธฐ์ฐจ ํ™•์‚ฐ์„ ์œ„ํ•ด์„œ๋Š” ๊ตญ๋‚ด ์—ฌ๊ฑด์— ์ ํ•ฉํ•˜๊ณ  ์ง€์†๊ฐ€๋Šฅํ•œ ์ถฉ์ „์ธํ”„๋ผ ๊ณต๊ธ‰ ์ „๋žต ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

์ด๋ฏธ ํ•ด์™ธ์—์„œ๋Š” ์ „๊ธฐ์ฐจ ์‹œ๋Œ€์˜ ์ถฉ์ „์ธํ”„๋ผ ๊ณต๊ธ‰ ๋ฐฉํ–ฅ๊ณผ ์ ์ • ๊ทœ๋ชจ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰ ์ค‘์ด๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ Jahn ์™ธ๋Š” ๋ชจ๋“  ์ฐจ๋Ÿ‰์ด ์ „๊ธฐ์ฐจ๋กœ ์ „ํ™˜๋  ๊ฒฝ์šฐ ๋‹ค์–‘ํ•œ ์ถฉ์ „ ์ „๋žต ํ•˜์—์„œ ๋„์‹œ๋ถ€ ์ „๋ ฅ ์ˆ˜์š”์™€ ์ถฉ์ „์ธํ”„๋ผ ๊ทœ๋ชจ๋ฅผ ์ถ”์ •ํ–ˆ๊ณ (3), Adenaw์™€ Lienkamp๋Š” ๋ฎŒํ—จ์‹œ ๋Œ€์ƒ์œผ๋กœ ๋ชจ๋“  ์ฐจ๋Ÿ‰์ด ์ „๊ธฐ์ฐจ๋กœ ์ „ํ™˜๋  ๊ฒฝ์šฐ ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•๋ณ„ ์ด์šฉ๋ฅ ์„ ๋ถ„์„ํ–ˆ๋‹ค(4). ์œ„ ์—ฐ๊ตฌ์‚ฌ๋ก€์™€ ๊ฐ™์ด ์žฅ๋ž˜ ์ถฉ์ „์ธํ”„๋ผ ๊ณ„ํš๊ณผ ์„ค๊ณ„๋ฅผ ์œ„ํ•œ ์—ฐ๊ตฌ๋Š” ์ถฉ์ „ ์ˆ˜์š”์— ๋Œ€ํ•œ ์ดํ•ด๊ฐ€ ์ „์ œ๋˜์–ด์•ผ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์•„์ง ๊ตญ๋‚ด์—์„œ๋Š” ์ถฉ์ „ ์ˆ˜์š”์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ฏธํกํ•œ ์ˆ˜์ค€์ด๋‹ค. ์ผ๋ถ€ ๊ณต์šฉ์ถฉ์ „์ธํ”„๋ผ ์ด์šฉ์‹ค์  ๋ถ„์„์ด๋‚˜(5), ๊ณต๋™์ฃผํƒ์— ์ œํ•œํ•œ ์ถฉ์ „์ˆ˜์š” ์˜ˆ์ธก ์—ฐ๊ตฌ(6)๊ฐ€ ์žˆ์œผ๋‚˜, ์ „์ฒด ์ถฉ์ „ํŒจํ„ด์„ ์ดํ•ดํ•˜๊ณ  ์ถฉ์ „ ์ˆ˜์š” ์˜ˆ์ธก์— ํ™œ์šฉํ•˜๊ธฐ๋Š” ์ œํ•œ์ ์ด๋‹ค.

์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์žฅ๋ž˜ ์ถฉ์ „์ธํ”„๋ผ ๊ณ„ํš๊ณผ ์ถฉ์ „์„ค๋น„ ๊ณต๊ธ‰ ์˜์‚ฌ ๊ฒฐ์ •์— ํ•„์š”ํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๋กœ์„œ ๊ตญ๋‚ด ์ „๊ธฐ์ฐจ ์šด์ „์ž์˜ ์ถฉ์ „ํŒจํ„ด์„ ๋ถ„์„ํ•˜๊ณ  ์ถฉ์ „ํŒจํ„ด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์„ ํƒ์ƒ‰ํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ ์ˆ˜ํ–‰๋๋‹ค. ์—ฌ๊ธฐ์—์„œ ์ถฉ์ „ํŒจํ„ด์€ ๊ฐœ๋ณ„ ์šด์ „์ž ๋Œ€์ƒ์œผ๋กœ ๋ชจ๋“  ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•์— ๋Œ€ํ•œ ์ด์šฉ์‹คํƒœ ๋ถ„์„์„ ํฌํ•จํ•œ๋‹ค. ํŠนํžˆ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ์ด์ ์€ ์ „์ฒด ์ง‘๋‹จ์˜ ํ‰๊ท  ํŒจํ„ด์„ ๋ถ„์„ํ•˜๋Š” ์ง‘๊ณ„ ๋ถ„์„ ๋ฐฉ์‹์ด ์•„๋‹ˆ๋ผ ๊ฐœ๋ณ„ ์šด์ „์ž์˜ ์ด์งˆ์  ์ถฉ์ „ํŒจํ„ด์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋น„์ง‘๊ณ„์  ๋ถ„์„ ๋ฐฉ์‹์œผ๋กœ ์ž ์žฌ๊ณ„์ธต๋ถ„์„๋ฒ•์„ ์ ์šฉํ–ˆ๋‹ค๋Š” ์ ์ด๋‹ค. ๋˜ํ•œ ์ถฉ์ „ํŒจํ„ด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์„ ํ†ต๊ณ„์  ๊ธฐ๋ฒ•์œผ๋กœ ํƒ์ƒ‰ํ•˜๊ณ  ํ–ฅํ›„ ์ถฉ์ „์ธํ”„๋ผ ํ™•๋Œ€๋ฅผ ์œ„ํ•œ ์‹œ์‚ฌ์ ์„ ๋„์ถœํ–ˆ๋‹ค.

2. ์„ ํ–‰์—ฐ๊ตฌ ๊ณ ์ฐฐ

2.1 ๊ตญ๋‚ด์™ธ ์„ ํ–‰์—ฐ๊ตฌ

์„ธ๊ณ„์ ์œผ๋กœ ์ „๊ธฐ์ฐจ ์‹œ์žฅ์ด ์„ฑ์žฅํ•˜๊ณ  ์žˆ์œผ๋‚˜ ์•„์ง ๊ธฐ์ˆ ๊ฐœ๋ฐœ์ด ์ง„ํ–‰ ์ค‘์ด๋ฉฐ ์ถฉ์ „์ธํ”„๋ผ๋„ ํ™•๋Œ€ ๊ณผ์ •์— ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‹ค์ œ ์ถฉ์ „ํŒจํ„ด์— ๋Œ€ํ•œ ์‹ค์ฆ์  ์—ฐ๊ตฌ๋Š” ๋งŽ์ง€ ์•Š์€ ์ƒํ™ฉ์ด๋‹ค. ํ•ด์™ธ์—์„œ๋Š” ์ฃผ๋กœ ๋…ธ๋ฅด์›จ์ด, ๋ถ๋ฏธ, ์œ ๋Ÿฝ ๋“ฑ ์ „๊ธฐ์ฐจ ์‹œ์žฅ์ด ์šฐ์„  ํ˜•์„ฑ๋œ ๊ตญ๊ฐ€์—์„œ ์ „๊ธฐ์ฐจ ์šด์ „์ž ๋Œ€์ƒ ์ถฉ์ „์ด์šฉ์‹คํƒœ ๋ถ„์„ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋๋‹ค. ๋…ธ๋ฅด์›จ์ด์˜ ์ถฉ์ „ํŒจํ„ด ์—ฐ๊ตฌ ์‚ฌ๋ก€๋กœ๋Š” Figuenbaum๊ณผ Kolbenstvedt ์—ฐ๊ตฌ๊ฐ€ ์žˆ๋Š”๋ฐ, ์ด๋“ค์€ ๋…ธ๋ฅด์›จ์ด ์ „๊ธฐ์ฐจ ์šด์ „์ž์˜ ์ถฉ์ „์‹คํƒœ๋ฅผ ์กฐ์‚ฌโ€ค๋ถ„์„ํ•˜์—ฌ ์ฃผ ์ถฉ์ „ํŒจํ„ด์ด ์ฃผ๊ฑฐ์ง€์™€ ์ง์žฅ ์™„์†์ถฉ์ „๊ธฐ ์ด์šฉ ํ˜•ํƒœ๋ผ๋Š” ๊ฒƒ์„ ๋ฐํ˜”๋‹ค(7). ๋ฏธ๊ตญ ์บ˜๋ฆฌํฌ๋‹ˆ์•„์ฃผ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ Lee ์™ธ ์—ฐ๊ตฌ์—์„œ๋Š” ์บ˜๋ฆฌํฌ๋‹ˆ์•„ ์ „๊ธฐ์ฐจ ์šด์ „์ž 7,979๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์ถฉ์ „์ด์šฉ์‹คํƒœ๋ฅผ ์กฐ์‚ฌํ•˜์—ฌ ์ฃผ๊ฑฐ์ง€์™€ ์ง์žฅ ๋ฐ ๊ณต์šฉ์ถฉ์ „์†Œ ๋“ฑ ์ฃผ์š” ์ถฉ์ „์žฅ์†Œ์—์„œ ์ถฉ์ „ํŒจํ„ด์„ ๋ถ„์„ํ–ˆ๋‹ค(8).

์ „๊ธฐ์ฐจ ์ถฉ์ „ํŒจํ„ด์€ ์ถฉ์ „์ˆ˜์š” ์˜ˆ์ธก๊ณผ ์ธํ”„๋ผ ๊ทœ๋ชจ ์‚ฐ์ •์— ์ค‘์š”ํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๋กœ ํ™œ์šฉ๋œ๋‹ค. Jahn ์™ธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ „๊ธฐ์ฐจ ์šด์ „์ž์˜ ๋‹ค์–‘ํ•œ ์ถฉ์ „ ์ „๋žต์„ ๊ฒ€ํ† ํ•œ ๊ฒฐ๊ณผ, ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „์ด ๊ฐ€์žฅ ๋‚ฎ์€ ์ถฉ์ „์ „๋ ฅ๋Ÿ‰์„ ์š”๊ตฌํ•˜๋ฉฐ ๋ชจ๋“  ์šด์ „์ž์˜ ์ถฉ์ „์ˆ˜์š”์— ๋Œ€์‘๊ฐ€๋Šฅํ•œ ๋ฐฉ์‹์ž„์„ ์ฃผ์žฅํ–ˆ๋‹ค(3). Adenaw์™€ Lienkamp ์—ฐ๊ตฌ๋Š” ํ˜„์‹ค์ ์ธ ์ถฉ์ „ํŒจํ„ด์œผ๋กœ์„œ ์ „์ฒด ์šด์ „์ž ์ค‘ ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „ ๊ฐ€๋Šฅ ๋น„์œจ์€ ์•ฝ 80%, ์ง์žฅ ์ถฉ์ „์€ ์•ฝ 20%๋งŒ ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ  ์žˆ๋‹ค(4). ๊ทธ ์™ธ Baresch์™€ Moser์˜ ์—ฐ๊ตฌ๋„ ์˜ค์ŠคํŠธ๋ฆฌ์•„๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ˜„์žฌ ์ถฉ์ „ํŒจํ„ด์„ ์ ์šฉํ•˜์—ฌ ์žฅ๋ž˜ ์ถฉ์ „์ธํ”„๋ผ ์ด์šฉ๋ฅ ์„ ์ถ”์ •ํ•œ ๊ฒฐ๊ณผ ์ฃผ๊ฑฐ์ง€ 88%, ์ง์žฅ 8.8%, ๊ธฐํƒ€ ๊ณต๊ณต์ถฉ์ „์†Œ 1.7%์˜ ๊ตฌ์„ฑ๋น„๋ฅผ ๊ฐ–๋Š” ๊ฒƒ์œผ๋กœ ์ถ”์ •ํ–ˆ๋‹ค(9).

๊ตญ๋‚ด์—์„œ ์ „๊ธฐ์ฐจ ์šด์ „์ž์˜ ์ถฉ์ „์ด์šฉ์‹คํƒœ ๊ด€๋ จ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ๊ณต์šฉ์ถฉ์ „์ธํ”„๋ผ ์ด์šฉ์‹ค์  ๋ถ„์„๊ณผ ์ „์ฒด ์ถฉ์ „ ์ˆ˜์š”์˜ ์‹œ๊ฐ„์  ๋ถ„ํฌ ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ ๊น€์ค€ํ˜ ์™ธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ์ „๋ ฅ๊ณต์‚ฌ์˜ ์ถฉ์ „์„œ๋น„์Šค ์‹ค์  ์ž๋ฃŒ๋ฅผ ํ† ๋Œ€๋กœ ์ฐจ๋Ÿ‰ ์šฉ๋„๋ณ„๋กœ ์ถฉ์ „ ์ˆ˜์š”์˜ ์‹œ๊ฐ„์  ํŒจํ„ด์„ ๋ถ„์„ํ•˜์˜€๋‹ค(5). ๊น€์น˜์—ฐ ์™ธ ์—ฐ๊ตฌ๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ ๊ณต๋™์ฃผํƒ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ถฉ์ „ ์ˆ˜์š”์˜ ์‹œ๊ฐ„์  ๋ถ„ํฌ๋ฅผ ๋ถ„์„ํ•˜์˜€๋Š”๋ฐ, ์—ฌ๊ธฐ์„œ ์ถฉ์ „ ์ˆ˜์š”๋Š” ์‚ฐ์—…๋ถ€์˜ 2017๋…„๋„ ์ „๊ธฐ์ฐจ ์กฐ์‚ฌ ๊ฒฐ๊ณผ๋ฅผ ์ง‘๊ณ„๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ์˜ˆ์ธกํ–ˆ๋‹ค(6).

2.2 ์„ ํ–‰์—ฐ๊ตฌ์™€ ๋ณธ ์—ฐ๊ตฌ์˜ ์ฐจ๋ณ„์„ฑ

์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ† ์—์„œ ์‚ดํŽด๋ณธ ๋ฐ”์™€ ๊ฐ™์ด ์ „๊ธฐ์ฐจ ์šด์ „์ž ์ถฉ์ „ํŒจํ„ด์— ๋Œ€ํ•œ ์‹ค์ฆ์  ์—ฐ๊ตฌ๋Š” ์•„์ง ์ดˆ๊ธฐ ๋‹จ๊ณ„๋‹ค. ๊ตญ๋‚ด์—์„œ ๊ฐœ๋ณ„ ์šด์ „์ž์— ์ดˆ์ ์„ ๋งž์ถ˜ ์ถฉ์ „ํŒจํ„ด ์—ฐ๊ตฌ๋Š” ๊ฑฐ์˜ ์—†๋Š”๋ฐ, ๊ทธ ์ด์œ ๋Š” ์ „๊ธฐ์ฐจ ์šด์ „์ž์˜ ์ถฉ์ „์ด์šฉ์‹คํƒœ๋ฅผ ์ „์ฒด์ ์œผ๋กœ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ดˆ์ž๋ฃŒ๋ฅผ ๊ตฌ๋“ํ•˜๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” ์‹ค์ œ ์ „๊ธฐ์ฐจ ์šด์ „์ž์˜ ์ถฉ์ „์ด์šฉ์‹คํƒœ์กฐ์‚ฌ ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ–ˆ์œผ๋ฉฐ ๋ชจ๋“  ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•์„ ํฌํ•จํ•œ ์ถฉ์ „ํŒจํ„ด์„ ํƒ์ƒ‰ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด ๊ตญ๋‚ด ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„ํ™”๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ ์ถฉ์ „ํŒจํ„ด ๋ถ„์„ ๋ฐฉ๋ฒ•์œผ๋กœ ๋น„์ง‘๊ณ„์  ์ ‘๊ทผ ๋ฐฉ์‹์ธ ์ž ์žฌ๊ณ„์ธต๋ถ„์„์„ ์ ์šฉํ•˜๊ณ  ์ถฉ์ „ํŒจํ„ด์˜ ์˜ํ–ฅ ์š”์ธ์„ ํƒ์ƒ‰ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ๊ตญ์™ธ ์„ ํ–‰ ์—ฐ๊ตฌ์™€๋„ ์ฐจ๋ณ„ํ™”๋œ๋‹ค.

์ด์–ด์„œ 3์žฅ์—์„œ๋Š” ์ถฉ์ „ํŒจํ„ด์˜ ์ž ์žฌ๊ณ„์ธต๋ถ„์„์— ๋Œ€ํ•œ ๋…ผ์˜๋ฅผ ์ „๊ฐœํ•˜๊ณ , 4์žฅ์—์„œ๋Š” ์ž ์žฌ๊ณ„์ธต๋ถ„์„ ๊ฒฐ๊ณผ ๋„์ถœํ•œ ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•๊ณผ ์˜ˆ์ธก๋ณ€์ธ์— ๋Œ€ํ•œ ๋ถ„์„์„ ์‹ค์‹œํ–ˆ๋‹ค.

3. ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•ํ™”๋ฅผ ์œ„ํ•œ ์ž ์žฌ๊ณ„์ธต๋ถ„์„

3.1 ๊ธฐ์ดˆ์ž๋ฃŒ

๋ณธ ๋…ผ๋ฌธ์—์„œ ํ™œ์šฉํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๋Š” 2021๋…„ ์ „๊ธฐ์ฐจ ์šด์ „์ž 297๋ช…์˜ ์ถฉ์ „์ด์šฉ์‹คํƒœ์กฐ์‚ฌ ๊ฒฐ๊ณผ์ด๋‹ค. ์œ„ ์กฐ์‚ฌ๋Š” ์ „๊ธฐ์ฐจ ์šด์ „์ž์˜

ํ‘œ 1. ์กฐ์‚ฌ์‘๋‹ต์ž์˜ ํŠน์„ฑ ์š”์•ฝ(n=297)

Table 1. Summary of survey respondents(n=297)

Characteristic

Distribution

Age

20s: 24, 30s: 126, 40s:115, 50s: 25, 60s: 7

Gender

Female: 73, Male: 224

Occupation

Office worker: 204, Self-employed: 63, Unemployed:24, Student: 6

Type of residence

Apartment: 238, Multi-family house: 30, Single house: 29

Household Income per month

Below 3 million KRW: 22, 3-5 million KRW: 163, 5-7 million KRW: 42, Over 7 million KRW: 70

EV Model

Kia Niro: 55, Chevrolet Bolt: 46.

Hyundai Kona: 41, Hyundai Ioniq5: 41, Hyundai Ioniq: 28, Tesla Model3: 26, Kia Soul: 19, Others: 41

Model year

Prior to 2017: 46, 2018: 73, 2019: 72, 2020: 50, 2021: 56

Operating period

Under one year: 63, 1-2 years: 63, 2-3 years: 65, 3-4 years: 68, Over 4 years: 38

Average traveled

kilometers per year

Under 10,000r: 51, 10,000-19,999: 110, 20,000-29,999: 69, 30,000-39,999: 44, Over 40,000: 23

์ถฉ์ „์ด์šฉ์‹คํƒœ๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ 3๊ฐœ์›” ์ด์ƒ ์ „๊ธฐ์ฐจ๋ฅผ ์šดํ–‰ํ•œ ์šด์ „์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์˜จ๋ผ์ธ ์กฐ์‚ฌ๋กœ ์ง„ํ–‰๋๋‹ค(10). ์ถฉ์ „์ด์šฉ์‹คํƒœ๋Š” ์กฐ์‚ฌ์ผ ๊ธฐ์ค€์œผ๋กœ ์ง์ „ ์ผ์ฃผ์ผ ๋™์•ˆ ๋ฐœ์ƒํ•œ ๋ชจ๋“  ์ถฉ์ „์ด๋ฒคํŠธ๋ฅผ ์กฐ์‚ฌํ–ˆ๊ณ , ๋Œ€์ƒ๊ธฐ๊ฐ„์€ 2021๋…„ 11์›” 29์ผ๋ถ€ํ„ฐ 12์›” 17์ผ๊นŒ์ง€๋ฅผ ํฌํ•จํ•œ๋‹ค. ์กฐ์‚ฌ์‘๋‹ต์ž์˜ ์ธ๊ตฌ ๋ฐ ๊ฐ€๊ตฌ ํŠน์„ฑ, ์ „๊ธฐ์ฐจ ๋ณด์œ  ํ˜„ํ™ฉ ๋“ฑ์„ ์š”์•ฝํ•œ ๊ฒฐ๊ณผ๋Š” ํ‘œ 1์— ์ œ์‹œํ–ˆ๋‹ค.

์ถฉ์ „ํŒจํ„ด ๋ถ„์„์— ํ™œ์šฉํ•œ ์ฃผ์š” ๋ณ€์ˆ˜๋ฅผ ์ •๋ฆฌํ•˜๋ฉด ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•๋ณ„ ์ถฉ์ „๋นˆ๋„, ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•๋ณ„ ์ ‘๊ทผ์„ฑ, ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•๋ณ„ ์„ ํ˜ธ๋„, ์ฐจ๋Ÿ‰ ํŠน์„ฑ, ๊ฑฐ์ฃผํ™˜๊ฒฝ ๋ฐ ์ธ๊ตฌํŠน์„ฑ ๋“ฑ์ด ์žˆ๋‹ค.

ํ‘œ 2. ๋ณ€์ˆ˜ ์ •์˜์™€ ๊ธฐ์ˆ  ํ†ต๊ณ„

Table 2. Definition and descriptive statistics of variables

Var

Definition

Mean

Std.dev

F_Home

Frequency of weekly charging event at home

2.42

0.15

F_Work

Frequency of weekly charging event at work

0.39

0.07

F_Public

Frequency of weekly charging event at the rest of places

1.20

0.11

F_Slow

Frequency of weekly charging event by slow charger

3.06

0.15

F_Rapid

Frequency of weekly charging event by rapid charger

0.95

0.10

A_Home_PS

Accessible to private slow charger at home(No=0, Yes=1)

0.33

0.47

A_Home_SS

Accessible to shared slow charger at home(No=0, Yes=1)

0.67

0.47

A_Home_SR

Accessible to shared rapid charger at home(No=0, Yes=1)

0.31

0.46

A_Rest_SS

Accessible to shared slow charger at your surroundings except home and work(No=0, Yes=1)

0.51

0.50

A_Rest_SR

Accessible to shared rapid charger at other places than home and work (No=0, Yes=1)

0.73

0.45

A_Work_PS

Accessible to private slow charger at work(No=0, Yes=1)

0.17

0.38

A_Work_SS

Accessible to shared slow charger at work(No=0, Yes=1)

0.37

0.48

A_Work_SR

Accessible to shared rapid charger at work(No=0, Yes=1)

0.27

0.44

Pref_Home

Preference of home charging calculated by 6 point scale from 3 prioritized choices

4.33

1.28

Pref_Slow

Preference of slow charging calculated by 6 point scale from 3 prioritized choice

4.81

1.18

N_public_all

Number of all public charging station visited during a week

3.47

3.41

month

Number of months the electric car has been driving

28.68

17.37

avertravel

Average of annual driving kilometers for the electric car is divided by 1000

22.71

21.05

energy

Battery capacity of the electric car

57.91

16.40

NModelyear

Age of the electric car based upon model year

2.18

1.72

resi_a

The type of dwelling is apartment (No=0, Yes=1)

0.80

0.40

resi_m

The type of dwelling is multi-unit dwelling except apartment (No=0, Yes=1)

0.10

0.30

resi_d

The type of dwelling is single-unit house (No=0, Yes=1)

0.10

0.30

parking_sec

The presence of dedicated parking space at home (No=0, Yes=1)

0.20

0.40

gender

gender (Female=0, Male=1)

0.75

0.43

age

age

39.83

7.88

๋ณธ ์—ฐ๊ตฌ์—์„œ ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•์€ ์„ค์น˜ ์žฅ์†Œ, ์šด์˜ ํ˜•ํƒœ, ์ถฉ์ „๊ธฐ ์œ ํ˜•์— ๋”ฐ๋ผ ์„ธ๋ถ„ํ™”ํ•ด์„œ ์ •์˜ํ–ˆ๋‹ค. ์„ค์น˜ ์žฅ์†Œ๋Š” ์ฃผ๊ฑฐ์ง€(Home)์™€ ์ง์žฅ(Work) ๋ฐ ๊ธฐํƒ€ ์žฅ์†Œ(Public), ์šด์˜ ํ˜•ํƒœ๋Š” ๋น„๊ณต์šฉ(Private)๊ณผ ๊ณต์šฉ(Shared), ์ถฉ์ „๊ธฐ ์œ ํ˜•์€ ์™„์†(Slow)๊ณผ ๊ธ‰์†(Rapid)์œผ๋กœ ๋ถ„๋ฅ˜ํ–ˆ๋‹ค.

์ฃผ์š” ๋ณ€์ˆ˜ ์ค‘ ์ถฉ์ „๋นˆ๋„(F)๋Š” ์ผ์ฃผ์ผ ๋™์•ˆ ์ถฉ์ „ํšŸ์ˆ˜๋ฅผ ํ‘œ์‹œํ•˜๋Š” ์ •์ˆ˜ํ˜• ๋ณ€์ˆ˜๋กœ ์ „์ฒด ์‘๋‹ต์ž ํ‰๊ท ์€ ์ผ์ฃผ์ผ ์ด 4.01ํšŒ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์žฅ์†Œ๋ณ„๋กœ ์ฃผ๊ฑฐ์ง€ 2.42ํšŒ, ๊ธฐํƒ€ ๊ณต์šฉ์ถฉ์ „์†Œ 1.20ํšŒ, ์ง์žฅ 0.39ํšŒ ์ˆœ์ด๋ฉฐ, ์ถฉ์ „๊ธฐ ์œ ํ˜•๋ณ„๋กœ๋Š” ์™„์† ์ถฉ์ „ 3.06ํšŒ, ๊ธ‰์† ์ถฉ์ „ 0.95ํšŒ๋ฅผ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ๋‹ค.

์ ‘๊ทผ์„ฑ(A) ๋ณ€์ˆ˜๋Š” ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•๋ณ„๋กœ ์ด์šฉ ๊ฐ€๋Šฅํ•œ์ง€ ์—ฌ๋ถ€๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ดํ•ญ ๋ณ€์ˆ˜๋‹ค. ์ „์ฒด ์ง‘๊ณ„๋ถ„์„ ๊ฒฐ๊ณผ ๊ฐ€์žฅ ์ ‘๊ทผ์„ฑ ๋†’์€ ์ถฉ์ „์ธํ”„๋ผ๋Š” ๊ธฐํƒ€ ๊ณต์šฉ ๊ธ‰์†์ถฉ์ „๊ธฐ์ด๋ฉฐ, ๋‹ค์Œ์€ ์ฃผ๊ฑฐ์ง€ ๊ณต์šฉ ์™„์†์ถฉ์ „๊ธฐ์™€ ๊ธฐํƒ€ ๊ณต์šฉ ์™„์†์ถฉ์ „๊ธฐ ์ˆœ์ด๋‹ค.

์„ ํ˜ธ๋„(Pref) ๋ณ€์ˆ˜๋Š” ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜• ์ค‘ ์„ค์น˜ ์šฐ์„ ์ˆœ์œ„๋ฅผ 1์ˆœ์œ„๋ถ€ํ„ฐ 3์ˆœ์œ„๊นŒ์ง€ ์กฐ์‚ฌํ•˜๊ณ  ๊ฐ€์ค‘ํ‰๊ท ๊ฐ’์„ 6์  ์ฒ™๋„๋กœ ํ‘œ๊ธฐํ–ˆ๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๋ฉด ์™„์†์ถฉ์ „๊ธฐ ์„ ํ˜ธ๋„๊ฐ€ ๊ธ‰์†์ถฉ์ „๊ธฐ ์„ ํ˜ธ๋„๋ณด๋‹ค ๋†’์€ ํŽธ์ด๋‹ค.

๊ทธ ์™ธ ๋ถ„์„์—์„œ ํ™œ์šฉํ•œ ๋‹ค๋ฅธ ๋ณ€์ˆ˜๋กœ ์ฐจ๋Ÿ‰ ํŠน์„ฑ, ๊ฑฐ์ฃผํ™˜๊ฒฝ ๋ฐ ์ธ๊ตฌ ํŠน์„ฑ ๊ด€๋ จ ๋ณ€์ˆ˜๋“ค์ด ์žˆ์œผ๋ฉฐ ๊ฐ ๋ณ€์ˆ˜์˜ ์ •์˜์™€ ๊ธฐ์ˆ ํ†ต๊ณ„๊ฐ’์€ ํ‘œ 2์™€ ๊ฐ™์ด ์ œ์‹œํ–ˆ๋‹ค.

3.2 ์ž ์žฌ๊ณ„์ธต๋ถ„์„

์ „๊ธฐ์ฐจ ์šด์ „์ž์˜ ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•œ ํ†ต๊ณ„์  ๊ธฐ๋ฒ•์œผ๋กœ ์ž ์žฌ๊ณ„์ธต๋ถ„์„(Latent class analysis)์„ ์ ์šฉํ–ˆ๋‹ค. ์ž ์žฌ๊ณ„์ธต๋ถ„์„์€ ๋น„์Šทํ•œ ์„ฑ๊ฒฉ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ด€์ธก์ž๋ฅผ ๋™์ผ ๊ณ„์ธต์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ  ๊ฐ ๊ณ„์ธต์— ์†ํ•  ํ™•๋ฅ ๊ณผ ๊ณ„์ธต ๊ฐ„ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋Š” ํ†ต๊ณ„์  ๊ธฐ๋ฒ•์ด๋‹ค(11). ๋ณธ ์—ฐ๊ตฌ๋Š” STATA์—์„œ ์ œ๊ณตํ•˜๋Š” ๋ถ„์„ํˆด์„ ํ™œ์šฉํ•˜์—ฌ ์ž ์žฌ๊ณ„์ธต๋ถ„์„์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ์ž ์žฌ๊ณ„์ธต๋ถ„์„์„ ์œ„ํ•ด์„œ๋Š” ์šฐ์„  ๊ณ„์ธต์„ ๋ถ„๋ฅ˜ํ•˜๊ธฐ ์œ„ํ•œ ์ง€ํ‘œ๋ณ€์ˆ˜๋ฅผ ์„ ์ •ํ•˜๊ณ , ๊ณ„์ธต ์ˆ˜๋ฅผ ์ฆ๊ฐ€ํ•˜๋ฉฐ ๋ชจํ˜•์˜ ์ ํ•ฉ๋„์™€ ๋ถ„๋ฅ˜ ์ ์ ˆ์„ฑ์„ ๋น„๊ตํ•˜์—ฌ ์ตœ์  ๋ชจํ˜•์„ ๋„์ถœํ•ด์•ผ ํ•œ๋‹ค.

๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ์ถฉ์ „ํŒจํ„ด์˜ ์ž ์žฌ๊ณ„์ธต๋ชจํ˜•์„ ๋„์‹ํ™”ํ•˜๋ฉด ๊ทธ๋ฆผ 1๊ณผ ๊ฐ™๋‹ค. ๊ทธ๋ฆผ 1์—์„œ ํ‘œํ˜„ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•์€ ๋‹ค์–‘ํ•œ ์š”์ธ์— ์˜ํ•ด ์˜ํ–ฅ์„ ๋ฐ›์•„ ํ˜•์„ฑ๋˜๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•๋ณ„ ์ถฉ์ „๋นˆ๋„๋กœ ํ‘œ์ถœ๋œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•์€ ์ž ์žฌ๊ณ„์ธต์œผ๋กœ ํ‘œํ˜„๋˜๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ์ถฉ์ „๋นˆ๋„๋Š” ์ง€ํ‘œ๋ณ€์ˆ˜์ด๋ฉฐ, ์ถฉ์ „ํŒจํ„ด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ž ์ •์  ์š”์ธ์€ ์˜ˆ์ธก๋ณ€์ธ์œผ๋กœ ์„ค๋ช…๋œ๋‹ค.

๊ทธ๋ฆผ. 1. ์ถฉ์ „ํŒจํ„ด ์ž ์žฌ๊ณ„์ธต๋ชจํ˜•

Fig. 1. Latent class model of EV driver charging pattern

../../Resources/kiee/KIEE.2022.71.11.1639/fig1.png

ํ‘œ 3. ์ž ์žฌ๊ณ„์ธต๋ชจํ˜• ์ ํ•ฉ๋„ ์ง€์ˆ˜์™€ ๊ณ„์ธต๋ณ„ ๋น„์œจ

Table 3. Model fit and classification rate of latent class

k

Model

Comparison

Information index

Classification Quality

Latent Class Classification Rate(%)

N

LL

AIC

BIC

Entropy

1

2

3

4

5

6

2

297

-2986.846

6005.691

6064.791

0.9059

0.8225

0.1775

3

297

-2883.796

5811.593

5892.855

0.9559

0.0237

0.8217

0.1546

4

297

-2717.78

5491.562

5594.987

0.8879

0.0822

0.6926

0.0606

0.1646

5

297

-2661.861

5391.723

5517.310

0.9361

0.0203

0.2205

0.5372

0.0606

0.1615

6

297

-2548.021

5176.042

5323.791

0.8964

0.0168

0.5094

0.2080

0.0605

0.1918

0.0135

์—ฌ๊ธฐ์—์„œ ์ถฉ์ „ํŒจํ„ด์˜ ์ง€ํ‘œ๋ณ€์ˆ˜๋กœ๋Š” ๋‹ค์–‘ํ•œ ์ถฉ์ „๋นˆ๋„ ๋ณ€์ˆ˜๋ฅผ ๊ฒ€ํ† ํ•œ ๊ฒฐ๊ณผ ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „ ํšŸ์ˆ˜(F_Home), ์ง์žฅ ์ถฉ์ „ ํšŸ์ˆ˜(F_Work), ๊ธฐํƒ€ ๊ณต์šฉ์ถฉ์ „์†Œ ์ถฉ์ „ ํšŸ์ˆ˜(F_Public), ์™„์† ์ถฉ์ „ ํšŸ์ˆ˜(F_Slow)์™€ ๊ธ‰์† ์ถฉ์ „ ํšŸ์ˆ˜(F_Rapid)์˜ ๋‹ค์„ฏ ๊ฐœ๋ฅผ ์„ ์ •ํ–ˆ๋‹ค. ์ถฉ์ „ํŒจํ„ด์˜ ์˜ˆ์ธก๋ณ€์ธ์œผ๋กœ๋Š” ์ถฉ์ „์ธํ”„๋ผ ์ ‘๊ทผ์„ฑ, ์ถฉ์ „์ธํ”„๋ผ ์„ ํ˜ธ๋„, ์ฐจ๋Ÿ‰ ํŠน์„ฑ, ๊ฐœ์ธ ๋ฐ ๊ฐ€๊ตฌ ํŠน์„ฑ ๋ณ€์ˆ˜ ๋“ฑ์„ ๊ฒ€ํ† ํ–ˆ๋‹ค.

๋‹ค์Œ ์ตœ์  ๋ชจํ˜• ๋„์ถœ์„ ์œ„ํ•ด ๊ณ„์ธต ์ˆ˜(k)๋ฅผ 2๊ฐœ๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ 6๊ฐœ๊นŒ์ง€ ์ฆ๊ฐ€์‹œํ‚ค๋ฉฐ ์ž ์žฌ๊ณ„์ธต๋ถ„์„์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ ๋ชจํ˜•๋ณ„ ์ ํ•ฉ๋„ ์ง€์ˆ˜์™€ ๊ณ„์ธต๋ณ„ ๋น„์œจ์˜ ์ ์ •์„ฑ์„ ๊ฒ€ํ† ํ•œ ๊ฒฐ๊ณผ ๊ณ„์ธต ์ˆ˜๊ฐ€ 4๊ฐœ์ธ ๋ชจํ˜•์ด ์„ ์ •๋˜์—ˆ๋‹ค. ํ‘œ 3์˜ ๋ชจํ˜•๋ณ„ ๋น„๊ต ๊ฒฐ๊ณผ์—์„œ ๋ณด๋“ฏ์ด ์ตœ์ข… ์„ ํƒ๋œ ๋ชจํ˜•์€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์šฐ๋„์˜ ์ฐจ์ด๋ฅผ ๋ณด์ด๋ฉฐ, ์ •๋ณด๋„ ์ง€์ˆ˜์™€ ๋ถ„๋ฅ˜์˜ ์งˆ ์ธก๋ฉด์—์„œ๋„ ์šฐ์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์‚ฐ์ถœํ–ˆ๋‹ค. ๊ณ„์ธต๋ณ„ ๋น„์œจ๋„ ์œ ์ผํ•˜๊ฒŒ 5% ์ดํ•˜ ๋ถ„๋ฅ˜๊ฐ€ ์—†๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค. ํ•ด๋‹น ๋ชจํ˜•์„ ํ†ตํ•ด ๋ถ„๋ฅ˜๋œ ๊ณ„์ธต๋ณ„ ์ƒ์„ธ ๋ถ„์„์€ 4์žฅ์—์„œ ๋…ผ์˜ํ–ˆ๋‹ค.

4. ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•๊ณผ ์˜ˆ์ธก๋ณ€์ธ ๋ถ„์„

4.1 ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•

4.1.1 ์œ ํ˜•๋ณ„ ๊ตฌ์„ฑ๋น„

์ž ์žฌ๊ณ„์ธต๋ถ„์„์„ ํ†ตํ•ด ์ „๊ธฐ์ฐจ ์šด์ „์ž 297๋ช…์˜ ์ถฉ์ „ํŒจํ„ด์€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ 4๊ฐœ ์œ ํ˜•์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ ์œ ํ˜•์˜ ๋ช…์นญ์€ ์ฃผ ์ถฉ์ „์žฅ์†Œ์™€ ์ถฉ์ „๊ธฐ ์œ ํ˜•์„ ๋ฐ˜์˜ํ•˜์—ฌ โ€˜์ฃผ๊ฑฐ์ง€ ์™„์† ์ค‘์‹ฌํ˜•(์ดํ•˜ ์ฃผ๊ฑฐ์ง€์™„์†ํ˜•)โ€™, โ€˜๊ณต์šฉ ์ค‘์‹ฌํ˜•(์ดํ•˜ ๊ณต์šฉ์ค‘์‹ฌํ˜•)โ€™, โ€˜ํ˜ผ์šฉ ์™„์† ์ค‘์‹ฌํ˜•(์ดํ•˜ ํ˜ผ์šฉ์™„์†ํ˜•)โ€™, โ€˜์ง์žฅ ์™„์† ์ค‘์‹ฌํ˜•(์ดํ•˜ ์ง์žฅ์™„์†ํ˜•)โ€™์œผ๋กœ ๋ช…๋ช…ํ–ˆ๋‹ค. ๊ทธ๋ฆผ 2๋Š” ๊ฐ ์œ ํ˜•๋ณ„ ๊ตฌ์„ฑ๋น„๋ฅผ ์‚ฐ์ถœํ•œ ๊ฒฐ๊ณผ์ด๋‹ค.

๊ทธ๋ฆผ. 2. ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•์˜ ๊ตฌ์„ฑ๋น„

Fig. 2. Classification rate of charging pattern class

../../Resources/kiee/KIEE.2022.71.11.1639/fig2.png

์ „๊ธฐ์ฐจ ์šด์ „์ž ์ง‘๋‹จ์—์„œ ๊ฐ ์œ ํ˜•์ด ์ฐจ์ง€ํ•˜๋Š” ๋น„์œจ์„ ํ™•๋ฅ ์ ์œผ๋กœ ์‚ฐ์ถœํ•œ ๊ฒฐ๊ณผ ๊ฐ€์žฅ ๋งŽ์€ ์œ ํ˜•์€ ํ˜ผ์šฉ์™„์†ํ˜•์œผ๋กœ ์•ฝ 69.3%์˜ ํ™•๋ฅ ์„ ๊ฐ–๋Š”๋‹ค. ์œ„ ๊ฒฐ๊ณผ๋Š” ๋น„๊ต์  ๋‹ค์–‘ํ•œ ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•์ด ๊ณต๊ธ‰๋˜์–ด ์žˆ๋Š” ๊ตญ๋‚ด ์ƒํ™ฉ์„ ๋ฐ˜์˜ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋‹ค์Œ์œผ๋กœ ๋†’์€ ๋น„์ค‘์„ ์ฐจ์ง€ํ•˜๋Š” ์œ ํ˜•์€ ์ฃผ๊ฑฐ์ง€์™„์†ํ˜• 16.5%, ๊ณต์šฉ์ค‘์‹ฌํ˜• 8.20%, ์ง์žฅ์™„์†ํ˜• 6.10% ์ˆœ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ง์žฅ์™„์†ํ˜•์€ ๊ฐ€์žฅ ๋‚ฎ์€ ๊ตฌ์„ฑ๋น„๋ฅผ ๋ณด์ด๋Š”๋ฐ ์ƒ๋Œ€์ ์œผ๋กœ ์ง์žฅ์—์„œ ์ถฉ์ „๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ์€ ๊ตญ๋‚ด ์ƒํ™ฉ์„ ๋ฐ˜์˜ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

4.1.2 ์œ ํ˜•๋ณ„ ๋ถ„์„

์ฒซ ๋ฒˆ์งธ ์œ ํ˜•์ธ ์ฃผ๊ฑฐ์ง€์™„์†ํ˜•์€ ์ฃผ ์ถฉ์ „์žฅ์†Œ๊ฐ€ ์ฃผ๊ฑฐ์ง€์ด๊ณ  ์ฃผ๋กœ ์™„์†์ถฉ์ „๊ธฐ๋กœ ์ถฉ์ „ํ•˜๋ฉฐ ์ฃผ๊ฑฐ์ง€ ์™ธ ์žฅ์†Œ๋‚˜ ๊ธ‰์†์ถฉ์ „๊ธฐ ์ด์šฉ์€ ๋“œ๋ฌธ ํŽธ์ด๋‹ค. ์ด ์ถฉ์ „๋นˆ๋„๋Š” ์ผ์ฃผ์ผ ํ‰๊ท  ์•ฝ 7ํšŒ๋กœ ๊ฑฐ์˜ ๋งค์ผ ์ถฉ์ „ํ•˜๋Š” ์œ ํ˜•์ด๋ฉฐ ๋‹ค๋ฅธ ์œ ํ˜•๊ณผ ๋น„๊ตํ•  ๋•Œ ๊ฐ€์žฅ ์ž์ฃผ ์ถฉ์ „ํ•˜๋Š” ์œ ํ˜•์ด๋‹ค.

๋‘ ๋ฒˆ์งธ ์œ ํ˜•์ธ ๊ณต์šฉ์ค‘์‹ฌํ˜•์€ ์ฃผ๊ฑฐ์ง€์™€ ์ง์žฅ์ด ์•„๋‹Œ ๊ธฐํƒ€ ๊ณต์šฉ์ถฉ์ „์†Œ์—์„œ ์ฃผ๋กœ ์ถฉ์ „ํ•˜๋Š” ํŒจํ„ด์„ ๋ณด์ธ๋‹ค. ๊ณต์šฉ์ค‘์‹ฌํ˜•์€ ๊ธ‰์†์ถฉ์ „๊ธฐ ์ถฉ์ „๋นˆ๋„๊ฐ€ ๋‹ค๋ฅธ ์œ ํ˜•์— ๋น„ํ•ด ๋†’์€ ํŽธ์ด๋‚˜, ๊ธ‰์†์ถฉ์ „๊ธฐ ์ถฉ์ „ํšŸ์ˆ˜๋Š” ํ‰๊ท  3.64ํšŒ, ์™„์†์ถฉ์ „๊ธฐ ์ถฉ์ „ํšŸ์ˆ˜๋Š” 2.99ํšŒ๋กœ ํฐ ์ฐจ์ด๋Š” ์—†๋Š” ํŽธ์ด๋‹ค. ๊ณต์šฉ์ค‘์‹ฌํ˜•์˜ ์ด ์ถฉ์ „๋นˆ๋„๋Š” ์ผ์ฃผ์ผ ํ‰๊ท  6.6ํšŒ๋กœ ๊ฑฐ์˜ ๋งค์ผ ์ถฉ์ „ํ•˜๋Š” ํ˜•ํƒœ์ด๋‹ค.

์„ธ ๋ฒˆ์งธ ์œ ํ˜•์ธ ํ˜ผ์šฉ์™„์†ํ˜•์€ ์ฃผ๊ฑฐ์ง€์™€ ์ง์žฅ ๋ฐ ๊ธฐํƒ€ ๊ณต์šฉ์ถฉ์ „์†Œ ๋“ฑ ์ถฉ์ „ ๊ฐ€๋Šฅํ•œ ๋‹ค์–‘ํ•œ ์žฅ์†Œ์—์„œ ์ถฉ์ „ํ•˜๊ณ , ์™„์†์ถฉ์ „๊ธฐ ์ถฉ์ „๋นˆ๋„๊ฐ€ ๋†’์€ ์œ ํ˜•์ด๋‹ค. ํ˜ผ์šฉ์™„์†ํ˜• ์—ญ์‹œ ์™„์†์ถฉ์ „ ํšŸ์ˆ˜๊ฐ€ ๊ธ‰์†์ถฉ์ „๊ธฐ ์ถฉ์ „ํšŸ์ˆ˜๋ณด๋‹ค 3๋ฐฐ ์ด์ƒ ๋†’์•„์„œ ์™„์† ์ค‘์‹ฌ ์ถฉ์ „ํŠน์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜ผ์šฉ์™„์†ํ˜•์˜ ์ด ์ถฉ์ „๋นˆ๋„๋Š” ์ผ์ฃผ์ผ ํ‰๊ท  ์•ฝ 2.6ํšŒ๋กœ ๊ฐ€์žฅ ์ถฉ์ „ํšŸ์ˆ˜๊ฐ€ ์ ์€ ์œ ํ˜•์ด๋‹ค.

๋„ค ๋ฒˆ์งธ ์œ ํ˜•์ธ ์ง์žฅ์™„์†ํ˜•์€ ์ฃผ ์ถฉ์ „์žฅ์†Œ๊ฐ€ ์ง์žฅ์ด๋ฉฐ ์™„์†์ถฉ์ „๊ธฐ๋ฅผ ์ฃผ๋กœ ์ด์šฉํ•˜๋Š” ํŠน์ง•์„ ๋ณด์ธ๋‹ค. ์ง์žฅ์™„์†ํ˜•์˜ ๊ฒฝ์šฐ ์ง์žฅ์—์„œ ์ถฉ์ „ํšŸ์ˆ˜๊ฐ€ ์ฃผ๊ฑฐ์ง€์™€ ๊ธฐํƒ€ ์žฅ์†Œ์˜ ์ถฉ์ „๋นˆ๋„๋ณด๋‹ค 2๋ฐฐ ์ด์ƒ ๋†’๋‹ค. ์™„์†์ถฉ์ „๊ธฐ ์ถฉ์ „ํšŸ์ˆ˜๊ฐ€ ๊ธ‰์†์ถฉ์ „๊ธฐ ์ถฉ์ „ํšŸ์ˆ˜๋ณด๋‹ค 3๋ฐฐ ์ด์ƒ ๋†’์ง€๋งŒ, ๋‹ค๋ฅธ ์ฃผ๊ฑฐ์ง€์™„์†ํ˜•์ด๋‚˜ ํ˜ผ์šฉ์™„์†ํ˜•์— ๋น„ํ•ด์„œ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๊ธ‰์†์ถฉ์ „ ์ถฉ์ „๋นˆ๋„๊ฐ€ ๋†’์€ ํŽธ์ด๋‹ค. ์ด ์ถฉ์ „๋นˆ๋„๋Š” ์ผ์ฃผ์ผ ํ‰๊ท  6.8ํšŒ๋กœ ์ฃผ๊ฑฐ์ง€์™„์†ํ˜•์ด๋‚˜ ํ˜ผ์šฉ์™„์†ํ˜•๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋งค์ผ ์ถฉ์ „ํ•˜๋Š” ํ˜•ํƒœ๋‹ค.

์ข…ํ•ฉ์ ์œผ๋กœ ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•๋ณ„ ์ถฉ์ „์žฅ์†Œ์™€ ์ถฉ์ „๊ธฐ ์œ ํ˜•์— ๋Œ€ํ•œ ์ถฉ์ „๋นˆ๋„๋Š” ํ‘œ 4์— ์š”์•ฝ ์ œ์‹œํ–ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ ์ถฉ์ „ํŒจํ„ด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์— ๋Œ€ํ•œ ํƒ์ƒ‰์€ 4.2์ ˆ ์˜ˆ์ธก๋ณ€์ธ ๋ถ„์„์—์„œ ์ œ์‹œํ–ˆ๋‹ค.

ํ‘œ 4. ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•๋ณ„ ์ถฉ์ „๋นˆ๋„

Table 4. Latent classes for EV charging pattern

Class

Average charging frequency per week

(Standard Deviation)

Location

Charger type

Home

Work

Public

Slow

Rapid

Home & Slow

6.98

(0.30)

0.04

(0.07)

0.52

(0.20)

6.72

(0.32)

0.82

(0.23)

Public-centric

1.13

(0.37)

0.04

(0.10)

5.46

(0.46)

2.99

(0.51)

3.64

(0.39)

Mixed & Slow

1.61

(0.13)

0.13

(0.04)

0.89

(0.12)

2.01

(0.15)

0.61

(0.12)

Work & Slow

1.22

(0.40)

4.72

(0.12)

0.89

(0.32)

5.28

(0.45)

1.56

(0.37)

4.2 ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•์˜ ์˜ˆ์ธก๋ณ€์ธ

3์žฅ ์—ฐ๊ตฌ๋ชจํ˜•์—์„œ ์ œ์‹œํ•œ ๋ฐ”์™€ ๊ฐ™์ด ์ถฉ์ „ํŒจํ„ด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ž ์žฌ์ ์ธ ์š”์ธ์œผ๋กœ ์ถฉ์ „์ธํ”„๋ผ ์ ‘๊ทผ์„ฑ, ์„ ํ˜ธ๋„, ์ฐจ๋Ÿ‰ ํŠน์„ฑ, ์ธ๊ตฌ ๋ฐ ์ฃผ๊ฑฐํ™˜๊ฒฝ ๋“ฑ์„ ๊ฒ€ํ† ํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ถฉ์ „ํŒจํ„ด์˜ ์˜ˆ์ธก๋ณ€์ธ์„ ํƒ์ƒ‰ํ•˜๊ธฐ ์œ„ํ•œ ํ†ต๊ณ„์  ๊ธฐ๋ฒ•์œผ๋กœ ๋‹คํ•ญ๋กœ์ง“๋ถ„์„์„ ํ™œ์šฉํ–ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•์„ ์ข…์†๋ณ€์ˆ˜๋กœ ํ•˜๊ณ  ๋…๋ฆฝ๋ณ€์ˆ˜๋กœ์„œ ๋‹ค์–‘ํ•œ ์˜ˆ์ธก๋ณ€์ธ์„ ์„ค์ •ํ•œ ๋‹คํ•ญ๋กœ์ง“๋ชจํ˜•์„ ๋ถ„์„ํ•จ์œผ๋กœ์จ ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•์— ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ณ€์ˆ˜๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

๋‹คํ•ญ๋ชจํ˜•์˜ ๊ธฐ์ค€ ๋ฒ”์ฃผ๋Š” ์Šน์šฉ์ฐจ ์ถฉ์ „ํŒจํ„ด์œผ๋กœ ๊ฐ€์žฅ ๊ธฐ๋ณธ์  ํ˜•ํƒœ์ธ ์ฃผ๊ฑฐ์ง€์™„์†ํ˜•์œผ๋กœ ์„ค์ •ํ–ˆ์œผ๋ฉฐ, ๊ทธ ์™ธ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์„ ์ข…์†๋ณ€์ˆ˜๋กœ ๋ชจํ˜•์„ ๋ถ„์„ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ํ‘œ 5์™€ ๊ฐ™์ด ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๋ชจํ˜•์ด ๋„์ถœ๋๋‹ค. ๋ชจํ˜•์„ ์‚ดํŽด๋ณด๋ฉด ๋ชจ๋“  ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•์˜ ์˜ˆ์ธก๋ณ€์ธ์œผ๋กœ์„œ ์ถฉ์ „์ธํ”„๋ผ ์ ‘๊ทผ์„ฑ, ์ถฉ์ „์ธํ”„๋ผ ์„ ํ˜ธ๋„ ๊ด€๋ จ ๋ณ€์ˆ˜๊ฐ€ ์œ ์˜ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ผ๋ถ€ ์œ ํ˜•์€ ์ „๊ธฐ์ฐจ ์ฃผํ–‰๊ฑฐ๋ฆฌ, ์ฃผ์ฐจ ํ˜•ํƒœ, ์„ฑ๋ณ„๋„ ์œ ์˜ํ•œ ์˜ˆ์ธก๋ณ€์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทธ ์™ธ ์ฐจ๋Ÿ‰ ํŠน์„ฑ์ด๋‚˜ ์ฃผ๊ฑฐ ํŠน์„ฑ์ด ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ๋ณธ ๋ชจํ˜•์—์„œ๋Š” ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•˜์ง€ ์•Š์•˜๋‹ค. ๊ฐ ์œ ํ˜•๋ณ„๋กœ ์„ธ๋ถ„ํ•˜์—ฌ ์˜ˆ์ธก๋ณ€์ธ์„ ์‚ดํŽด๋ณด๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

๊ณต์šฉ์ค‘์‹ฌํ˜•์€ ํŠนํžˆ ์ฃผ๊ฑฐ์ง€ ์™„์†์ถฉ์ „๊ธฐ ์ ‘๊ทผ์„ฑ, ๊ธฐํƒ€ ๊ธ‰์†์ถฉ์ „๊ธฐ ์ ‘๊ทผ์„ฑ, ์ฃผ๊ฑฐ์ง€์™€ ์™„์†์ถฉ์ „๊ธฐ ์„ ํ˜ธ, ์ฃผ์ฐจ ์•ˆ์ •์„ฑ์ด ์œ ์˜ํ•œ ์˜ˆ์ธก๋ณ€์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฆ‰ ์ฃผ๊ฑฐ์ง€ ์™„์† ์ถฉ์ „์ด ์–ด๋ ต๊ณ  ๊ณต์šฉ ๊ธ‰์†์ถฉ์ „๊ธฐ ์ ‘๊ทผ์„ฑ์ด ๋†’์„์ˆ˜๋ก, ์ฃผ๊ฑฐ์ง€์™€ ์™„์† ์ถฉ์ „์— ๋Œ€ํ•œ ์„ ํ˜ธ๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก ๊ณต์šฉ์ค‘์‹ฌํ˜• ์ถฉ์ „ํŒจํ„ด์„ ๋ณด์ธ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ์ฃผ๊ฑฐ์ง€์—์„œ ์•ˆ์ •์ ์ธ ์ฃผ์ฐจ๊ฐ€ ์–ด๋ ค์šด ๊ฒฝ์šฐ๋„ ๊ณต์šฉ์ถฉ์ „ํ˜• ํŒจํ„ด์„ ๋ณด์ด๋Š”๋ฐ ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค.

ํ‘œ 5. ์˜ˆ์ธก๋ณ€์ธ ๋ถ„์„

Table 5. Results from multinomial logit model

Base : Home & slow

Latent class

Public-centric

Mixed & slow

Work & slow

Variable

Coefficient

Coefficient

Coefficient

constant

5.383*

3.824**

-0.050

Access to charging infra

A_Home_PS

-1.629**

-0.774*

-1.932*

A_Home_SS

-1.949**

-0.678

-1.227

A_Home_SR

-0.570

-0.629

-1.003

A_Work_PS

0.849

-0.109

4.255***

A_Work_SS

-0.444

-0.663

-0.407

A_Work_SR

1.185

0.551

3.091***

A_Rest_SS

0.966

0.253

0.059

A_Rest_SR

1.738*

0.078

0.705

Charging preference

Pref_Home

-0.744***

-0.372**

-1.416***

Pref_Slow

-0.863***

-0.285

-0.006

EV-related features

Month

0.085

-0.033

0.127

Avertravel

0.015

-0.029***

0.008

Energy

0.120

0.011

-0.101

NModelyear

-1.119

0.221

-1.287

Personal and household features

Resi_a

-0.979

1.001

1.043

Resi_m

-1.682

0.336

1.854

Parking_sec

-1.747*

-0.008

-0.343

Gender

-0.151

0.353

3.991**

Age

0.019

0.024

-0.050

Log-likelihood at zero : -261.23748

Final log-likelihood : -194.01829

LR Chi2(57) = 134.44, Prob>Chi2 = 0.0000

Pseudo R2 = 0.2573

Notes: * indicates statistical significance at the 10% level, ** at the 5% level, and *** at the 1% level or better.

ํ˜ผ์šฉ์™„์†ํ˜•์€ ์ฃผ๊ฑฐ์ง€ ๋น„๊ณต์šฉ ์™„์†์ถฉ์ „๊ธฐ ์ ‘๊ทผ์„ฑ, ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „ ์„ ํ˜ธ, ์—ฐํ‰๊ท  ์ฃผํ–‰๊ฑฐ๋ฆฌ๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์˜ˆ์ธก๋ณ€์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฆ‰ ์ฃผ๊ฑฐ์ง€ ๋น„๊ณต์šฉ ์ถฉ์ „๊ธฐ๋ฅผ ์ด์šฉํ•˜๊ธฐ ์–ด๋ ต๊ณ  ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „์— ๋Œ€ํ•œ ์„ ํ˜ธ๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก ํ˜ผ์šฉ์™„์†ํ˜•์˜ ํŒจํ„ด์„ ๋ณด์ธ๋‹ค. ์ฐจ๋Ÿ‰ ํŠน์„ฑ๊ณผ ๊ด€๋ จํ•˜์—ฌ ๋‚ฎ์€ ์—ฐํ‰๊ท  ์ฃผํ–‰๊ฑฐ๋ฆฌ๋„ ํ˜ผ์šฉ์™„์†ํ˜• ํŒจํ„ด์„ ๋ณด์ด๋Š”๋ฐ ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค.

์ง์žฅ์™„์†ํ˜•์€ ์ฃผ๊ฑฐ์ง€์™€ ์ง์žฅ ์ถฉ์ „๊ธฐ์˜ ์ ‘๊ทผ์„ฑ, ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „ ์„ ํ˜ธ, ์„ฑ๋ณ„์ด ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์˜ˆ์ธก๋ณ€์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฆ‰ ์ฃผ๊ฑฐ์ง€ ๋น„๊ณต์šฉ ์ถฉ์ „๊ธฐ๋ฅผ ์ด์šฉํ•˜๊ธฐ ์–ด๋ ต๊ณ  ์ง์žฅ์—์„œ ๋น„๊ณต์šฉ ์™„์†์ถฉ์ „๊ธฐ ๋˜๋Š” ๊ณต์šฉ ๊ธ‰์†์ถฉ์ „๊ธฐ์˜ ์ ‘๊ทผ์„ฑ์ด ๋†’์•„์งˆ์ˆ˜๋ก ์ง์žฅ์™„์†ํ˜•์˜ ํŒจํ„ด์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „์— ๋Œ€ํ•œ ์„ ํ˜ธ๋„๊ฐ€ ๋‚ฎ๊ณ  ๋‚จ์ž์ผ์ˆ˜๋ก ์ง์žฅ์™„์†ํ˜• ํŒจํ„ด์„ ๋ณด์ด๋Š”๋ฐ ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค.

์˜ˆ์ธก๋ณ€์ธ๋ณ„๋กœ ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•์— ๋ฏธ์น˜๋Š” ํ•œ๊ณ„ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ•œ๊ณ„ํšจ๊ณผ๋Š” ์˜ˆ์ธก๋ณ€์ธ ํ•œ ๋‹จ์œ„์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ข…์†๋ณ€์ˆ˜์˜ ํ™•๋ฅ ๋ณ€ํ™”์œจ์„ ์˜๋ฏธํ•˜๋ฉฐ, ๋…๋ฆฝ๋ณ€์ˆ˜ ํ™•๋ฅ ์˜ ํŽธ๋ฏธ๋ถ„๋œ ์‹์œผ๋กœ ์ถ”์ •ํ•œ๋‹ค. ํ•ด๋‹น ๊ฒฐ๊ณผ๋Š” ํ‘œ 6์—์„œ ์ œ์‹œํ–ˆ์œผ๋ฉฐ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๋ณ€์ธ์„ ์ค‘์‹ฌ์œผ๋กœ ์‚ดํŽด๋ณด๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

์ฃผ๊ฑฐ์ง€ ๋น„๊ณต์šฉ ์™„์†์ถฉ์ „๊ธฐ๋ฅผ ์ด์šฉ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ ์ž ์žฌ๊ณ„์ธต์ธ ์ฃผ๊ฑฐ์ง€์™„์†ํ˜•์ผ ํ™•๋ฅ ์€ 12.1% ๋” ๋†’์•„์ง„๋‹ค. ์ง์žฅ ๋น„๊ณต์šฉ ์™„์†์ถฉ์ „๊ธฐ๋ฅผ ์ด์šฉ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ ์ง์žฅ์™„์†ํ˜•์ผ ํ™•๋ฅ ์€ 15.5% ๋†’์•„์ง€๊ณ , ํ˜ผ์šฉ์™„์†ํ˜•์ผ ํ™•๋ฅ ์€ 16.4% ๋‚ฎ์•„์ง„๋‹ค. ์—ฐํ‰๊ท  ์ฃผํ–‰๊ฑฐ๋ฆฌ์˜ ๊ฒฝ์šฐ ์ฃผํ–‰๊ฑฐ๋ฆฌ๊ฐ€ 1,000km ๋Š˜์–ด๋‚  ๋•Œ๋งˆ๋‹ค ๊ณต์šฉ์ค‘์‹ฌํ˜•์ผ ํ™•๋ฅ ์€ 0.2%, ์ง์žฅ ์™„์†ํ˜•์ผ ํ™•๋ฅ ์€ 0.1%, ์ฃผ๊ฑฐ์ง€์™„์†ํ˜•์ผ ํ™•๋ฅ ์€ 0.3% ๋†’์•„์ง€๊ณ , ํ˜ผ์šฉ์™„์†ํ˜•์ผ ํ™•๋ฅ ์€ 0.6% ๋‚ฎ์•„์ง„๋‹ค.

ํ‘œ 6. ์˜ˆ์ธก๋ณ€์ธ์˜ ํ•œ๊ณ„ํšจ๊ณผ

Table 6. Marginal effect of explanatory variables

Variable

Public-centric

Mixed & slow

Work & slow

Home& Slow

A_Home_PS

-0.052

-0.026

-0.043

0.121

A_Home_SS

-0.079

-0.012

-0.017

0.108

A_Home_SR

-0.001

-0.068

-0.018

0.087

A_Work_PS

0.031

-0.164

0.155

-0.022

A_Work_SS

0.004

-0.094

0.004

0.086

A_Work_SR

0.029

-0.026

0.094

-0.097

A_Rest_SS

0.046

0.004

-0.010

-0.041

A_Rest_SR

0.095

-0.078

0.014

-0.032

Pref_Home

-0.020

-0.002

-0.039

0.061

Pref_Slow

-0.039

-0.016

0.012

0.043

Month

0.006

-0.013

0.005

0.002

Avertravel

0.002

-0.006

0.001

0.003

Energy

0.000

0.002

-0.001

-0.001

NModelyear

-0.068

0.122

-0.047

-0.006

Resi_a

-0.107

0.204

0.0188

-0.115

Resi_m

-0.124

0.088

0.070

-0.033

Parking_sec

-0.101

0.082

-0.003

0.021

Gender

-0.047

-0.028

0.140

-0.065

Age

0.000

0.005

-0.003

-0.003

4.3 ๋ถ„์„์˜ ์‹œ์‚ฌ์ 

์•ž์„œ ์ œ์‹œํ•œ ์ „๊ธฐ์ฐจ ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•๊ณผ ์˜ˆ์ธก๋ณ€์ธ ๋ถ„์„์„ ํ†ตํ•ด ๋„์ถœํ•œ ์‹œ์‚ฌ์ ์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ธ ๊ฐ€์ง€๋กœ ์š”์•ฝํ–ˆ๋‹ค.

์ฒซ ๋ฒˆ์งธ, ์ „๊ธฐ์ฐจ ์šด์ „์ž์˜ ์ถฉ์ „ํŒจํ„ด์€ ์ถฉ์ „์ธํ”„๋ผ ์—ฌ๊ฑด, ์ฐจ๋Ÿ‰ ํŠน์„ฑ, ์ฃผ๊ฑฐ ํ™˜๊ฒฝ ๋“ฑ ๋‹ค์–‘ํ•œ ์š”์ธ์— ์˜ํ–ฅ์„ ๋ฐ›๊ณ , ๋น„๊ต์  ๋‹ค์–‘ํ•œ ํ˜•ํƒœ๋กœ ์กด์žฌํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋”ฐ๋ผ์„œ ํ•ด์™ธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•˜๋Š” ์ถฉ์ „ํŒจํ„ด์€ ์ œ๋ฐ˜ ์—ฌ๊ฑด์ด ์ƒ์ดํ•œ ๊ตญ๋‚ด ์‚ฌ๋ก€์— ์ ์šฉํ•˜๊ธฐ๋Š” ์ ํ•ฉํ•˜์ง€ ์•Š๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ ์ „๊ธฐ์ฐจ ์šด์ „์ž์˜ ์ถฉ์ „ํŒจํ„ด์€ ์ƒ๋Œ€์ ์œผ๋กœ ๊ณต๊ณต์ถฉ์ „์ธํ”„๋ผ ๊ณต๊ธ‰ ์ˆ˜์ค€์ด ์–‘ํ˜ธํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์—ฌ๋Ÿฌ ์žฅ์†Œ์—์„œ ์ถฉ์ „ํ•˜๋Š” ํ˜ผ์šฉ์™„์†ํ˜•์ด ๊ฐ€์žฅ ๋งŽ์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‹ค๋งŒ ์˜ˆ์ธก๋ณ€์ธ ๋ถ„์„์—์„œ ๋ณด๋“ฏ์ด ์ฃผํ–‰๊ฑฐ๋ฆฌ๊ฐ€ ๊ธธ์–ด์งˆ์ˆ˜๋ก ํ˜ผ์šฉ์™„์†ํ˜•์ธ ํ™•๋ฅ ์€ ์ค„์–ด๋“ค๊ณ  ์ฃผ๊ฑฐ์ง€์™€ ์ง์žฅ ๋“ฑ ์•ˆ์ •์ ์ธ ์žฅ์†Œ์— ์ง‘์ค‘ํ•˜๋Š” ์ถฉ์ „ํŒจํ„ด์ผ ํ™•๋ฅ ์€ ๋†’์•„์ง„๋‹ค.

๋‘ ๋ฒˆ์งธ, ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „๊ณผ ์™„์† ์ถฉ์ „์€ ์Šน์šฉ์ฐจ ์šด์ „์ž์˜ ๊ธฐ๋ณธ์ ์ธ ์ถฉ์ „ ๋ฐฉ์‹์œผ๋กœ ์ค‘์š”ํ•˜๋‹ค๋Š” ์ ์ด๋‹ค. ๊ตญ๋‚ด์—์„œ๋Š” ๊ณต๊ณต ๊ธ‰์†์ถฉ์ „๊ธฐ ์ค‘์‹ฌ ์ธํ”„๋ผ ํ™•๋Œ€๋ฅผ ์ถ”์ง„ํ•ด์™”์œผ๋‚˜, ํ–ฅํ›„ ์ „๊ธฐ์ฐจ ํ™•์‚ฐ์— ๋Œ€๋น„ํ•˜์—ฌ ์ฃผ๊ฑฐ์ง€์™€ ์™„์† ์ค‘์‹ฌ ์ถฉ์ „์ธํ”„๋ผ ๊ณต๊ธ‰์œผ๋กœ ๋ฐฉํ–ฅ ์ „ํ™˜์ด ํ•„์š”ํ•˜๋‹ค. ์˜ˆ์ธก๋ณ€์ธ ๋ถ„์„์—์„œ ๋ณด๋“ฏ์ด ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „์ด ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ ์ฃผ๊ฑฐ์ง€์™„์†ํ˜• ํ™•๋ฅ ์€ ํ˜„์žฌ 16.5%์—์„œ 27.6%๋กœ ๋†’์•„์ง„๋‹ค. ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „๊ณผ ์™„์† ์ถฉ์ „์˜ ์ค‘์š”์„ฑ์€ ์ถฉ์ „์ธํ”„๋ผ ์„ ํ˜ธ๋„ ์ธก๋ฉด์—์„œ๋„ ๋“œ๋Ÿฌ๋‚œ๋‹ค. ๊ทธ๋ฆผ 3์€ ์ถฉ์ „์ธํ”„๋ผ ์„ ํ˜ธ๋„๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋กœ, ๊ฐ€์žฅ ๋งŽ์€ ์‘๋‹ต์ž๊ฐ€ ์šฐ์„  ์„ค์น˜๋ฅผ ์›ํ•˜๋Š” ์ถฉ์ „์ธํ”„๋ผ ํ˜•ํƒœ๋Š” ์ฃผ๊ฑฐ์ง€ ๋น„๊ณต์šฉ ์™„์† ์ถฉ์ „๊ธฐ์ด๋ฉฐ ๋‹ค์Œ์€ ์ฃผ๊ฑฐ์ง€ ๊ณต์šฉ ์™„์†์ถฉ์ „๊ธฐ ์ˆœ์ด๋‹ค.

์„ธ ๋ฒˆ์งธ, ์ง์žฅ์€ ๋Œ€๋ถ€๋ถ„ ์šด์ „์ž์—๊ฒŒ ์ฃผ์š” ํ™œ๋™์ด ์ผ์–ด๋‚˜๋Š” ๊ณต๊ฐ„์œผ๋กœ ์ถฉ์ „์ธํ”„๋ผ ๊ณต๊ธ‰ ํ•„์š”์„ฑ์ด ๋†’๋‹ค๋Š” ์ ์ด๋‹ค. ์•„์ง ๊ตญ๋‚ด์—์„œ๋Š” ์ง์žฅ ์ค‘์‹ฌ ์ถฉ์ „ํŒจํ„ด์ด ์•ฝ 6%๋กœ ๋งŽ์ง€ ์•Š์€ ํŽธ์ด๋‚˜ ์˜ˆ์ธก๋ณ€์ธ ๋ถ„์„์—์„œ ๋ณด๋“ฏ์ด ์ง์žฅ ์ถฉ์ „๊ธฐ๋ฅผ ๊ณต๊ธ‰ํ•  ๊ฒฝ์šฐ ์ง์žฅ์™„์†ํ˜• ์ถฉ์ „ ์œ ํ˜•์€ ์•ฝ 21% ์ด์ƒ์œผ๋กœ ๋†’์•„์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์ฃผ๊ฑฐ์ง€ ์ถฉ์ „ ์—ฌ๊ฑด์ด ์—ด์•…ํ•œ ๊ฒฝ์šฐ ๊ธฐ์ดˆ ์ถฉ์ „์žฅ์†Œ๋กœ์„œ ์ง์žฅ ์ถฉ์ „์ธํ”„๋ผ ๊ณต๊ธ‰์„ ๊ฒ€ํ† ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

๊ทธ๋ฆผ. 3. ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•๋ณ„ ์„ ํ˜ธ ๋น„์œจ

Fig. 3. Preference by type of charging infrastructure

../../Resources/kiee/KIEE.2022.71.11.1639/fig3.png

5. ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ

๋ณธ ๋…ผ๋ฌธ์€ ์ „๊ธฐ์ฐจ ์‹œ๋Œ€๋ฅผ ๋งž์ดํ•˜์—ฌ ์žฅ๋ž˜ ์ถฉ์ „์ธํ”„๋ผ ๊ณ„ํš๊ณผ ์ถฉ์ „์„ค๋น„ ๊ณต๊ธ‰์˜ ์˜์‚ฌ ๊ฒฐ์ •์— ํ•„์š”ํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๋กœ์„œ ์ „๊ธฐ์ฐจ ์šด์ „์ž์˜ ์ถฉ์ „ํŒจํ„ด์„ ๋ถ„์„ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๊ตญ๋‚ด ์ „๊ธฐ์ฐจ ์ถฉ์ „ํŒจํ„ด์€ ์ฃผ ์ถฉ์ „ ์žฅ์†Œ์™€ ์ถฉ์ „๊ธฐ ์œ ํ˜•์— ๋”ฐ๋ผ ํ˜ผ์šฉ์™„์†ํ˜•, ์ฃผ๊ฑฐ์ง€์™„์†ํ˜•, ๊ณต์šฉ์ค‘์‹ฌํ˜•, ์ง์žฅ์™„์†ํ˜•์˜ ๋„ค ๊ฐ€์ง€ ์œ ํ˜•์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ถฉ์ „ํŒจํ„ด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ฃผ์š” ์š”์ธ์œผ๋กœ๋Š” ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•๋ณ„ ์ ‘๊ทผ์„ฑ๊ณผ ์ถฉ์ „์ธํ”„๋ผ ์œ ํ˜•๋ณ„ ์„ ํ˜ธ๋„๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•˜๋ฉฐ, ์ผ๋ถ€ ์ถฉ์ „ํŒจํ„ด ์œ ํ˜•์˜ ๊ฒฝ์šฐ ์ฃผํ–‰๊ฑฐ๋ฆฌ์™€ ์ฃผ์ฐจ ์—ฌ๊ฑด ๋“ฑ๋„ ์œ ์˜ํ•œ ์˜ํ–ฅ ์š”์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

๊ฒฐ๋ก ์œผ๋กœ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•œ ๊ธฐ์ˆ ์ โ€ค์ •์ฑ…์  ํ•จ์˜๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‘ ๊ฐ€์ง€๋กœ ์š”์•ฝํ–ˆ๋‹ค.

์šฐ์„  ์ด์šฉ์ž ์ถฉ์ „ํŒจํ„ด์„ ๊ณ ๋ คํ•  ๋•Œ ํ–ฅํ›„ ์Šน์šฉ์ฐจ๋ฅผ ์œ„ํ•œ ์ถฉ์ „์ธํ”„๋ผ ๊ณ„ํš์€ ์ฃผ๊ฑฐ์ง€์™€ ์™„์† ์ค‘์‹ฌ ๊ตฌ์ถ• ๋ฐฉํ–ฅ์ด ๊ฐ•์กฐ๋ผ์•ผ ํ•  ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณต๋™์ฃผํƒ ๋น„์œจ์ด ๋†’์€ ๊ตญ๋‚ด ์ฃผ๊ฑฐ ํ™˜๊ฒฝ์— ์ถฉ์ „์ธํ”„๋ผ๋ฅผ ํ™•๋Œ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์žฅ์• ์š”์ธ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ๊ณผ ์„œ๋น„์Šค ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋‹ค. ์˜ˆ๋กœ ํƒœ์–‘๊ด‘โ€ค์—๋„ˆ์ง€์ €์žฅ์‹œ์Šคํ…œ๊ณผ ์—ฐ๊ณ„ํ•˜๊ณ  ์Šค๋งˆํŠธ ์ถฉ์ „์ด ๊ฐ€๋Šฅํ•œ ์ถฉ์ „์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•จ์œผ๋กœ์จ ์ „๋ ฅ ๊ณต๊ธ‰๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ๊ฒฝ์ œ์„ฑ์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋ฌด์„ ์ถฉ์ „๊ธฐ์ˆ ๋„ ์ฃผ์ฐจ์žฅ์—์„œ ๊ณต๊ฐ„ ์ œ์•ฝ์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ๋กœ ํ–ฅํ›„ ์ƒ์šฉํ™” ํ•„์š”์„ฑ์ด ๋†’๋‹ค.

๋‹ค์Œ์œผ๋กœ๋Š” ํ–ฅํ›„ ๊ณต๊ณต์ถฉ์ „์ธํ”„๋ผ ๊ตฌ์ถ• ์ •์ฑ…์€ ์Šน์šฉ์ฐจ๋ณด๋‹ค๋Š” ์ƒ์šฉ์ฐจ ์ค‘์‹ฌ์œผ๋กœ ์ „ํ™˜๋ผ์•ผ ํ•  ๊ฒƒ์ด๋‹ค. ์ผ์ƒ ์ƒํ™œ ์ค‘ ์Šน์šฉ์ฐจ ์šด์ „์ž๋Š” ๊ธ‰์†์ถฉ์ „ ํ•„์š”์„ฑ์ด ๋‚ฎ๊ณ , ์ฃผ๊ฑฐ์ง€์™€ ์ง์žฅ๊ณผ ๊ฐ™์€ ์ฃผ ํ™œ๋™์žฅ์†Œ์— ์ถฉ์ „์ธํ”„๋ผ๊ฐ€ ๊ณต๊ธ‰๋œ๋‹ค๋ฉด ์•ˆ์ •์  ์ถฉ์ „์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํƒ์‹œ์™€ ํŠธ๋Ÿญ ๋“ฑ ์ƒ์šฉ์ฐจ์˜ ๊ฒฝ์šฐ ์ถฉ์ „์— ๋Œ€ํ•œ ์‹œ๊ณต๊ฐ„์  ์ œ์•ฝ์ด ํฌ๊ธฐ ๋•Œ๋ฌธ์— ๊ธ‰์†์ถฉ์ „๊ณผ ๊ณต์šฉ์ถฉ์ „์†Œ์— ๋Œ€ํ•œ ์˜์กด๋„๊ฐ€ ๋†’์„ ์ˆ˜๋ฐ–์— ์—†๋‹ค. ์•ž์œผ๋กœ ํšจ๊ณผ์ ์ธ ์ƒ์šฉ์ฐจ ์ถฉ์ „์ธํ”„๋ผ๋ฅผ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ƒ์šฉ์ฐจ ์ถฉ์ „ํŒจํ„ด ๋ถ„์„๋„ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๋กœ ์ง„ํ–‰๋ผ์•ผ ํ•  ๊ฒƒ์ด๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„๋กœ๋Š” ๊ตฌ๋“๊ฐ€๋Šฅํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๊ฐ€ ์ œํ•œ์ ์ด์–ด์„œ ๋น„๊ต์  ์†Œ๊ทœ๋ชจ ํ‘œ๋ณธ์ง‘๋‹จ๊ณผ ๋‹จ๊ธฐ ๋ถ„์„๊ธฐ๊ฐ„์„ ์ ์šฉํ–ˆ๋‹ค๋Š” ์ ์„ ๋“ค ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๊ตญ๋‚ด ์ „๊ธฐ์ฐจ ์šด์ „์ž ๋ชจ์ง‘๋‹จ์˜ ์ธ๊ตฌ ํŠน์„ฑ์ด ๋ถˆํ™•์‹คํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ํ‘œ๋ณธ ์ถ”์ถœ์ด ์ด๋ค„์ง€์ง€ ๋ชปํ•œ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ํ–ฅํ›„ ์—ฐ๊ตฌ๋กœ์„œ ํ‘œ๋ณธ ๊ทœ๋ชจ๋ฅผ ํ™•๋Œ€ํ•œ ์ „๊ธฐ์ฐจ ์šด์ „์ž ๋Œ€์ƒ ์ถฉ์ „์ด์šฉ์‹คํƒœ ์กฐ์‚ฌ์™€ ๋ถ„์„์„ ์ œ์•ˆํ•˜๋ฉฐ, OBD(On-board device) ์žฅ์น˜๋ฅผ ํ™œ์šฉํ•  ๊ฒฝ์šฐ ์ƒ์‹œ์ ์ธ ์ž๋ฃŒ ์ˆ˜์ง‘์ด ๊ฐ€๋Šฅํ•˜๋ฏ€๋กœ ์‹œ๊ณ„์—ด์  ์ถฉ์ „ํŒจํ„ด๋„ ๋ถ„์„ ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.

References

1 
Sun-Jin Yun, 2021, Korea 2050 Carbon-neutral Scenario for 2050, Energy Focus, Vol. 18, No. 4, pp. 18-32Google Search
2 
Ministry of Environment, October 13 2021, Integrated information system for public charging infrastructure, Acquired at http://me.go.kr/home/web/board/read.do?pagerOffset=10&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=286&orgCd=&boardId=1481260&boardMasterId=1&boardCategoryId=39&decorator=.Google Search
3 
Miranda Jahn Ricardo, Syrรฉ Anne, Grahle Alexander, Schlenther Tilmann, Gรถhlich Dietmar, 2020, Methodology for Determining Charging Strategies for Urban Private Vehicles based on Traffic Simulation Results, Procedia Computer Science, Vol. 170, pp. 751-756DOI
4 
L. Adenaw, M. Lienkamp, 2021, Multi-Criteria, Co-evolutionary Charging Behaviour: An Agent-based Simulation of Urban Electromobility, World Electric Vehicle JournalDOI
5 
Jun-Hyeok Kim, Sang-Keun Moon, Byung-Sung Lee, In-Jin Seo, Chul-Hwan Kim, 2018, Analysis and pattern deduction of actual electric vehicle charging data, The Transactions of the Korean Institute of Electric Engineers, Vol. 67, No. 11, pp. 1455-1462DOI
6 
Chi-Yeon Kim, Chae-Rim Kim, Soo-Hwan Cho, 2021, An analysis on the Change of Peak Load time Considering the forecasting of electric vehicle charging demand for Apartment Based On Monte Carlo Simulation, The Transactions of the Korean Institute of Electric Engineers, Vol. 70, No. 1, pp. 21-30Google Search
7 
K. Figuenbaum, M. Kolbenstvedt, 2016, Learning from Norwegian battery and plug-in hybrid vehicle users-results from a survey of vehicle owners, Institute of Transport Economics, Acquired at https://www.toi.no/getfile.php/1343167-1467632310/Publikasjoner/T%C3%98I%20rapporter/2016/1492-2016/Summary.pdf.Google Search
8 
Jae Hyun Lee, Debapriya Chakraborty, Scott J. Hardman, Gil Tal, February 2020, Exploring electric vehicle charging patterns: Mixed usage of charging infrastructure, Transportation Research Part D, Vol. volume 79, pp. 388-395DOI
9 
Martin Baresch, Simon Moser, June 2019, Allocation of e-car charging : Assessing the utilization of charging infrastructures by location, Transportation Research Part A, Vol. volume 124, pp. 388-395DOI
10 
Jiyoung ParK, 2021.12.31, Advanced Vehicle Technologies and Implications for Future Transport Systems, Korea Transport InstituteGoogle Search
11 
Tacksoo Shin, 2010, Latent class study using longitudinal profile analysis and cluster analysis: comparing growth mixture modeling, Journal of Education Evaluation, Vol. 23, No. 3, pp. 641-664Google Search

์ €์ž์†Œ๊ฐœ

๋ฐ•์ง€์˜ (Jiyoung Park)
../../Resources/kiee/KIEE.2022.71.11.1639/au1.png

She is a Research Fellow at Korea Transport Institute, Sejong, South Korea.

Her work is centered on exploring the impact of new technology such as electric vehicles and autonomous vehicles on transportation system.

She received a Ph.D. from the Department of Civil and Environmental Engineering, University of California at Irvine in 2009.

๊น€์ฐฌ์„ฑ (Chansung Kim)
../../Resources/kiee/KIEE.2022.71.11.1639/au2.png

He is a Senior Research Fellow at Korea Transport Institute, Sejong, South Korea.

His work is centered on exploring agent based model and travel behavior.

He received a Ph.D. from Portland State University in 2005.