• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

  1. ( Dept. of Mechanical Engineering, Jeonbuk National University, Korea)
  2. (Dept. of BigData and SW Platform R&D, Korea Automotive Technology Institute, Korea. )



Autonomous driving, C-ITS, LSTM, maneuver classification, SVM, trajectory prediction.

1. 서 론

안정성은 자율주행 기술의 광범위한 적용에 있어 핵심적인 요소이다. 다양한 적용 영역 중에서도 도심 교차로의 경우, 차량 거동의 동적인 변화, 경로의 교차, 비자율주행 차량과 보행자가 교통에 혼재된 상황 등 여러 불확실성이 존재한다. 이러한 불확실성으로 인해 자율주행 차량의 기능만으로는 안정성을 충분히 확보하기 어렵다. 이에 따라, 도심 교차로 자율주행은 차세대 지능형 교통시스템(Cooperative-Intelligent Transport Systems; C-ITS)의 지원이 필수적이다(1).

C-ITS는 연결된 자율주행 차량들이 도로변 장비(road side unit, RSU)와 양방향 통신을 통해 차량의 센서 정보, 정밀 위치 정보, 도로 정보 등을 상호 공유하여 교통 상황을 인식하고 사고를 예방 및 대응하는 차세대 지능형 교통체계이다. (2)의 연구에서 자율주행차량과 RSU간 통신을 통해 운전자의 사각지대에서 달려오는 보행자를 감지하고, 이를 자율주행차량에게 공유함으로써 교통의 안정성을 향상할 수 있음을 시뮬레이션과 실험을 통해 입증하였다. 통신 기능이 없는 비자율주행 차량이 자율주행 차량과 교통에 혼재되어 있는 과도기(transition period)의 경우에도, RSU를 통해 비자율주행 차량의 미래 경로를 예측하고, C-ITS가 이 정보를 종합적으로 분석하여 자율주행 차량을 관제하는 방식을 통해 전체 교통의 불확실성을 완화할 수 있다.

비자율주행 차량의 주요한 불확실 요소는 그 차량의 거동(maneuver)과 미래 경로에 있다. 자율주행 차량의 경로 계획은 주변 차량과의 충돌이 일어나지 않도록 수립해야 한다. 특히 교차로와 같은 복합적인 환경의 경우 경로 예측의 정확도 확보와 더불어 차량의 거동 형태를 정확히 파악하는 것이 충돌 회피에 있어 중요한 요소로 작용한다. 차량의 거동 분류와 경로 예측을 위하여 다양한 기법이 제안되어 왔다. (3)은 히든 마르코프 모델(hidden markov models, HMM)을 통해 고속도로에서 차선 변경 차량의 정상 및 위험 거동을 분류하고, HSS(hybrid state system)를 통해 분류 결과에 기반한 동역학 모델을 사용하여 예측 경로를 생성한다. (4)는 고속도로 환경에서 차량의 직진 및 차선 변경, 속도 유지 및 감속 거동을 분류하기 위해 인공신경망의 크로스 엔트로피(cross-entropy) 최소화 기법을 적용하고, 분류 결과 기반 멀티모달(multi-modal) LSTM (long-short term memory)을 통해 각 거동에 해당하는 예측 경로를 생성한다. (5)는 도심 교차로 환경에서 베이지안 네트워크(bayesian network)를 활용하여 다양한 교차로 진입 차량의 거동을 분류하며, 거동에 따른 지능형 운전자 모델(intelligent driver model, IDM)의 모수(parameter) 변경을 통해 예측 경로를 생성한다. (6)은 회전 교차로 환경에서 LSTM을 통해 차량의 목적지를 예측하며, 이를 통해 거동을 추론한다. (7)은 도심 교차로에서 LSTM을 활용하여 주변 차량의 좌회전 중 비정형 차선 변경을 예측하고, 그에 따른 Ego 차량의 제어 알고리즘을 제안하였다. 특히 (4), (6), (7)과 같은 LSTM 기반 경로 예측은 장시간 경로 예측에서 높은 성능을 보이며 활발한 연구가 진행되고 있으며, 진입 시점부터 빠져나가는 시점까지 4초 이상의 예측이 필요한 교차로 환경에 사용하기에 적합하다. 하지만 이러한 LSTM 기반 모델의 경우 예측 정확도를 위해 학습시에 많은 데이터가 필요하며, 데이터 수가 상대적으로 적은 비정형 데이터에 대해서는 예측 정확도가 떨어진다는 단점이 있다(8). 이 문제는 데이터셋의 크기가 작아질수록 심화된다. 기존에 거동 분류 및 경로 예측에 관련한 많은 연구가 진행되었지만, 대다수는 고속도로 환경에 집중하였으며, 비정형 데이터의 불균형 문제를 다루지 않는다는 한계가 있다.

이에 본 논문에서는, 불균형성을 지닌 소규모 도심 교차로 데이터셋에도 강건한 성능을 지닌 차량 거동(maneuver) 분류 기반 경로 예측 프레임워크를 제안하고자 한다. 제안된 프레임워크는 C-ITS의 RSU에 포함되어 비자율주행 차량의 거동과 미래 경로 정보를 높은 정확도로 제공함으로써 관내 자율주행 시의 불확실성을 해소하는 것을 목표로 한다. 제안된 프레임워크는 비선형 경로 데이터 분류에 있어 뛰어난 성능을 보인 RBF(radial basis function) 커널을 적용한 SVM(support vector machine)(9)를 활용해 거동의 유형 분류 후, 거동 유형별로 최적화된 다중 LSTM 인코더-디코더(LSTM encoder-decoder)(10) 모델에서 특정 모델의 예측 결과가 도출되도록 하는 스위칭 메커니즘(switching mechanism)을 적용하였다. 각 모델의 거동에 맞는 최적화는 특정 진입 차선에서 해당하지 않는 거동 유형의 데이터를 학습 과정에서 제외하는 선택적 데이터 학습방식(11)을 통해 이루어진다. 예를 들어, 2차선 진입 차량의 비정형 거동 경로 예측 모델의 경우, 2차선 정형 거동 데이터를 학습 과정에서 제외한다.

이 논문의 주요 기여한 바는 소규모 데이터로도 비정형 상황에 대한 경로 예측이 가능한 프레임워크를 제안한 것이다. 제안된 프레임워크 내에서 SVM 분류기를 통해 거동(maneuver)을 분류하고, 개별 데이터로 학습된 모델을 통해 예측함으로써 소규모 데이터, 편중된 데이터에 대해서도 비정형 상황에 대한 정확한 경로 예측이 가능하도록 하였다.

논문의 구성은 다음과 같다. 제 2장에서 SVM을 기반으로 한 차량 거동 분류에 대해 설명한다. 이 과정에서 사용된 커널(kernel) 및 모수(parameter)의 수식 설명이 포함된다. 제 3장에서 LSTM의 기본 원리와 그에 기반한 LSTM 인코더-디코더 구조에 대해 다루며, 본 논문에서 제안하는 LSTM 기반의 스위칭 방식 경로 예측에 대한 이론적 근거를 제시한다. 제 4장에서는 제안된 프레임워크의 거동 분류 및 경로 예측 정확도를 검증하기 위한 실험 결과를 상세하게 설명한다. 마지막으로, 본 논문의 주요 발견과 향후 연구 방향성에 대해 고찰한다.

2. SVM 기반의 거동 분류

SVM은 패턴 인식 및 회귀를 위한 지도 학습 모델로, 선형 분류 문제에서 높은 성능을 보인다. 데이터 집합 $D$가 식(1)과 같이 주어졌을 때, $x_{i}$는 차원이 $p$인 실수 벡터이며, $y_{i}$는 $x_{i}$가 어떤 클래스에 속해 있는지 나타내는 레이블로 -1 또는 1의 값을 갖는다. 이때, SVM의 학습은 두 클래스 간의 결정 경계(decision boundary)와 데이터 포인트 사이의 마진(margin)을 최대화하는 초평면(hyperplane)을 찾는 방법에 기반한다. 여기서 마진은 결정 경계와 가장 가까운 훈련 데이터 포인트(support vector) 사이의 거리를 의미한다. 그림 1과 같이 RBF(radial basis function) 커널은 SVM에서 데이터를 높은 차원의 특징 공간(feature space)으로 매핑함으로써 비선형 분류를 가능하게 한다. 이와 관련된 SVM의 목적함수 식은 식(2)로 표현할 수 있다(9).

그림. 1. SVM-RBF 커널 비선형 분류 예시

Fig. 1. Example of nonlinear classification using SVM-RBF kernel

../../Resources/kiee/KIEE.2023.72.11.1477/fig1.png

(1)
$D$ = {$(x_{i},\:y_{i})\vert x_{i}\in R^{p}$,$y_{i}\in${-1,1}}$_{i=1}^{N}$

(2)
$\max_{\alpha}\sum_{i=1}^{N}\alpha_{i}-\dfrac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_{i}\alpha_{j}y_{i}y_{j}K(x_{i},\: x_{j})$

(3)
$\sum_{i=1}^{N}y_{i}\alpha_{i}=0,\: 0\le\alpha_{i}\le C$

(4)
$K(x,\: x')=\exp(-\gamma \vert \vert x-x'\vert \vert^{2})$

$K(x_{i},\: x_{j})$ : RBF kernel

$C$ : regularization parameter

$x_{i}$ : i-th data point

$y_{i}$ : class label of the i-th data point

$\alpha_{i}$ : Lagrange multiplier for i-th data point

$x'$ : support vector

$\gamma$ : RBF kernel parameter

SVM-RBF 커널은 고차원 공간에서의 비선형 분리 능력이 뛰어난 특성을 활용해 차량의 복잡한 비선형 경로(trajectory)를 분류할 수 있다(8). 논문에서 제안한 SVM 기반 거동 분류 방식은 차량의 x-y 좌표, 요우(yaw) 변화량, 속력의 차량의 현재 상태를 통해 해당하는 차량의 경로 레이블을 분류하고, 이를 기반으로 거동을 추론한다. 또한, 비정형 데이터의 수가 상대적으로 작을 경우 해당 레이블에 더 높은 가중치를 부과함으로써, 학습 과정에서 분류 마진을 최적화하여 모델의 분류 성능을 향상한다.

3. LSTM 기반의 스위치 방식 경로 예측

3.1 LSTM

LSTM은 순환 신경망(recurrent neural network, RNN)의 한 종류이다. 기존 RNN의 기울기 소실(vanishing gradient) 문제를 해결하기 위해 설계되었으며, 시퀀스 내의 장기의존성을 효과적으로 학습할 수 있다(12). LSTM 유닛은 셀 $C_{t}$, 입력 게이트 $i_{t}$, 망각 게이트 $f_{t}$, 출력 게이트 $o_{t}$로 구성되어 있다. LSTM 모델은 다음과 같은 관계식들로 정의된다.

(5)
$f_{t}=\sigma(W_{f}\bullet[h_{t-1},\: x_{t}]+ b_{f})$

(6)
$i_{t}=\sigma(W_{i}\bullet[h_{t-1},\: x_{t}]+b_{i})$

(7)
$o_{t}=\sigma(W_{o}\bullet[h_{t-1},\: x_{t}]+b_{o})$

(8)
$h_{t}=o_{t}\odot\tanh(C_{t})$

(9)
$\widetilde C_{t}=\tanh(W_{C}\bullet[h_{t-1},\: x_{t}]+b_{C})$

(10)
$C_{t}=f_{t}\odot C_{t-1}+i_{t}\odot\widetilde C_{t}$

$f_{t}$ : forget gate

$o_{t}$ : output gate

$i_{t}$ : input gate

$\sigma(x)=\dfrac{1}{1+e^{-x}}$ : sigmoid function

$W_{f},\: W_{o},\: W_{i},\: W_{C}$ : linear transformation matrices

$b_{f},\: b_{o},\: b_{i},\: b_{C}:$ : bias vectors

$x_{t}$ : input vector

$x\odot y$ : element wise product

$C_{t}$ : cell state

$\widetilde C_{t}$ : new cell state

LSTM의 각 게이트는 식 (5)~(7)에 따라 셀 메모리의 중요하지 않은 정보를 필터링하고, 저장할 정보를 선별하며, 출력의 정도를 결정한다. 셀 상태는 학습 가능한 모수 $W,\: b$에 의해 식 (9)~(10)을 따라 업데이트된다. 각 입력 정보에 대한 출력인 은닉 상태(hidden state) $h_{t}$는 식(8)에 따라 현재 셀 상태와 출력 게이트 $o_{t}$에 의해 업데이트된다.

3.2 LSTM Encoder-Decoder 기반 차량 경로 예측

그림. 2. LSTM encoder-decoder 구조

Fig. 2. LSTM encoder-decoder architecture

../../Resources/kiee/KIEE.2023.72.11.1477/fig2.png

LSTM 인코더-디코더 구조는 가변 길이의 입력 및 출력 시퀀스(sequence-to-sequence) 문제를 처리하기 위해 주로 사용되는 인공신경망 구조이다. 이 구조는 그림 2에서 묘사한 바와 같이 인코더와 디코더로 구성되어 있다. 인코더는 입력 시퀀스를 처리하여 고정된 길이의 컨텍스트 벡터(context vector)로 변환하는 역할을 한다. 이 때, LSTM의 장기의존성을 포착하는 특성을 활용해 입력 시퀀스의 주요 특성과 정보를 효과적으로 컨텍스트 벡터로 압축할 수 있다. 디코더는 인코더가 생성한 컨텍스트 벡터를 초기상태로 사용하여 타겟 시퀀스를 생성한다. 이 과정에서 디코더는 출력 시퀀스를 재귀적으로 생성한다.

차량 경로 예측에서 LSTM 인코더-디코더는 차량 경로(trajectory)를 입력 길이 $m$과 출력 길이 $n$의 합인 $m+n$ 길이의 스닙펫(snippet)으로 분할하여 학습한다. 길이 $m$ 인코더 입력 시퀀스에 대한 길이 $n$ 디코더 출력 시퀀스는 스닙펫 후반부의 길이 $n$ 경로 시퀀스와 오차를 계산하고, 이를 지도학습하여 경로 예측 성능을 향상한다.

3.3 LSTM 기반의 스위칭 방식 경로 예측

본 논문에서 제안된 프레임워크는 SVM-RBF(support vector machine with radial basis function kernel)를 활용하여 차량의 거동을 분류하고, 다중 LSTM 인코더-디코더 모델에서 해당 거동에 맞춰 최적화된 LSTM 인코더-디코더(encoder-decoder) 모델을 선택해 경로를 예측하는 방식으로 설계되었다. 그림 3은 제안된 프레임워크의 간략한 묘사이다. 가상 시작선(imaginary start-line, ISL)을 도입하여, 차량의 정형 및 비정형 거동 패턴이 나타나는 초기 지점으로 정의한다. 차량이 ISL을 통과한 직후부터 특정 시간 $t_{l}$ 동안 차량의 위치, 요우(yaw) 변화율, 속도 등의 현재 상태를 SVM-RBF의 입력으로 거동을 분류하고, 가장 빈번한 거동을 교차로를 빠져나갈 때까지 고정한다. 이 정보는 다중 LSTM 인코더-디코더 모델에 입력으로 제공된다. 입력된 거동 분류를 기반으로 특정 모델의 예측 결과만 도출되는 스위칭 메커니즘(switching mechanism)을 도입함으로써 예측 구간 동안 거동 분류의 불안정성을 줄이고 목표 지점을 일관적으로 유지할 수 있다. 이는 C-ITS와 자율주행 차량에게 경로 계획에 유용한 정보를 제공할 수 있다.

그림. 3. 제안된 거동 분류 기반 경로 예측 프레임워크

Fig. 3. Proposed maneuver based trajectory prediction framework

../../Resources/kiee/KIEE.2023.72.11.1477/fig3.png

제안된 프레임워크의 모수 설정과 학습은 캐스케이드(cascade) 방식으로 진행된다. SVM-RBF 커널의 경우, 상기한 바와 같이 학습과정에서 경로 데이터와 그에 대응하는 레이블을 활용하여 지도 학습한다. 모수 최적화는 그리드 서치(grid search) 알고리즘을 사용하였다. 이를 통해 $C$ 값과 $\gamma$ 값 등의 가능한 모든 모수 조합을 교차 검증하여 최적의 모수 조합을 선정한다. 비정형 데이터에 대한 가중치는 ISL 및 데이터 분포를 고려하여 실험적인 방법으로 최적값을 결정한다.

본 연구에서는 각 거동에 대한 LSTM 인코더-디코더 최적화를 위해 (11)에서 제안한 선택적 데이터 학습 방식(Selective Data Training Approach)을 적용하였다. 이 방식에 기반하여, 정형 거동 경로 예측 모델의 경우, 학습 과정에서 비정형 경로 데이터를 배제하였다. 역으로, 비정형 거동의 경로 예측 모델의 학습 과정에서 정형 거동 경로 데이터를 배제하였다. 이런 학습 방식을 통해 모델은 범용성을 확보하면서도, 특정 거동에 대응하는 도착 지점 예측 성능을 높일 수 있다. 또한, 이는 (4)에서 지적한 LSTM 기반 모델의 경로 예측에서 발생하는 여러 거동의 평균 경로 값으로 예측하는 예측 편향을 해소할 수 있다.

4. 실 험

4.1 데이터 구성

그림. 4. 학습 및 검증에 사용된 경로 데이터셋

Fig. 4. Dataset used for train and validation

../../Resources/kiee/KIEE.2023.72.11.1477/fig4.png

본 연구에서 제안된 프레임워크의 검증을 위해 (1)의 경로 데이터셋을 활용했다. 해당 경로 데이터셋은 4-방향 교차로에서 2개의 좌회전 전용 차선에서 수집된 데이터로 구성되어 있다. 각 차선에 대해 정형 거동은 기존 차선을 유지하면서 수행되는 좌회전을, 비정형 거동은 좌회전 도중 차선 변경이 발생하는 경우로 정의한다. 각 거동에 해당하는 차량의 경로(path)는 그림 4에서 확인할 수 있다. 본 연구의 주목적이 편중된 소규모 데이터셋에서의 경로 예측 성능 향상에 있으므로, 수집된 데이터 중에서 정형 거동 50개와 비정형 거동 30개, 총 80개의 케이스를 검증에 활용하였다. 이 중 80%의 데이터셋을 프레임워크의 학습에 사용하였고, 20%의 데이터셋을 검증에 사용하였다.

표 1. 경로 데이터셋 세부 구성

Table 1. Detailed data configuration

Class

Maneuver

Number of cases

Number of snippet for train

M1

1st to 1st

25

28,248

M2

1st to 2nd

15

17,455

M3

2nd to 1st

15

18,137

M4

2nd to 2nd

25

27,324

좌표계 설정에 있어서, x-축은 차량의 진입 방향에 일치하도록 정렬하였으며, x-축 좌표가 0m인 지점은 모든 실험 차량이 연구의 목적에 부합한 운행을 시작하는 지점으로 설정하였다. SVM과 LSTM 인코더-디코더는 x-축 좌표의 값이 0m인 지점부터 y-축 좌표의 값이 80m인 지점까지의 경로를 학습하였다. 데이터셋 세부 구성은 표 1과 같으며, 그림 4는 80개 케이스에 대한 경로 데이터들을 나타낸다.

4.2 거동 분류 및 경로 예측 검증

본 논문의 실험은 PyTorch 플랫폼을 기반으로 진행되었다. 실험에 사용된 하드웨어 환경은 NVIDIA GeForce 3060 Ti GPU, 16GB RAM, 및 Intel Core i7 CPU로 구성되어 있다. 모델의 모수 설정은 표 2와 같다. 손실 함수로는 Mean Squared Error(MSE)를 사용하였다. 성능 평가 지표로는 유클리디언 거리를 기반으로 한 Mean Absolute Error(MAE)와 Root Mean Squared Error(RMSE)를 적용하였다. 최적화 알고리즘으로는 Adam 옵티마이저를 사용하였으며, 학습률(learning late)은 0.001로 초기 설정한 후, 검증 데이터에 대한 오차 개선이 정체될 때마다 학습률을 절반으로 조정하는 방식으로 모수를 최적화하였다.

제안된 프레임워크에서 각 거동에 최적화된 LSTM 인코더-디코더는 총 네가지의 거동 유형을 고려하여, 각 차선별로 정형/비정형 데이터에 해당하지 않는 데이터를 배제하는 방식으로 학습하였다. 모든 경로 예측 LSTM 인코더-디코더는 2초의 입력 경로 시퀀스에 대하여 4초의 경로 시퀀스를 출력한다. 각 거동에 해당하는 예측 모델의 학습 데이터는 표 3에서 확인할 수 있다.

성능 비교를 위해 동일한 모수 설정을 갖는 LSTM 인코더-디코더 모델을 기준 모델(Baseline)로 선택하였다. 이 기준 모델은 전체 학습 데이터를 사용하여 학습이 이루어졌다. 본 연구에서 제안한 프레임워크의 거동 분류에 필요한 시간 $t_{l}$은 0.1초로 설정하였다. '4.1 데이터 구성' 섹션에서 설명한 것과 같이 x-축 좌표를 설정했을 때, 차량은 x-축 좌표 90m 지점에서 교차로에 진입한다. 이 지점부터 거동 패턴이 나타나므로, ISL의 위치를 x-축 좌표 기준 88m, 90m, 92m, 94m, 96m로 변경하면서 분류 정확도와 예측 정확도를 평가하였다. 예측 정확도의 지표로는 RMSE와 MAE를 사용하며, 이는 식 (12), (13)에 따라 계산되었다. 예측 구간은 1차선의 경우 y-축 기준 14m를 지난 시점까지, 2차선의 경우 y-축 기준 12m를 지난 시점까지로 한정하였다. 이 구간은 교차로에 진입한 이후 약 2초가 소요되는 시점으로, 차량의 좌회전 시 동적 변화가 가장 크게 나타나는 구간이다. ISL 위치에 따른 스니펫 수는 표 4에서 확인할 수 있다.

표 2. 모수설정 세부 구성

Table 2. Parameter configuration details

Item

Parameter

Value

Maneuuver Classification

SVM abnoraml weight

2

$t_{l}$(s)

0.1

Encoder

Input size

4

Hidden size

100

Number of Encoder layers

3

Decoder

Input size

4

Hidden size

100

Number of Encoder layers

3

LSTM Encoder-Decoder

Batch size

100

Input length($m$)

200

Target length($n$)

400

Optimization

Optimizer

Adam

Learning rate (initial value)

0.001

Loss function

MSE

표 3. 거동 별 경로 예측 모델의 학습 데이터

Table 3. Training data for trajectory prediction model by maneuver

Trajectory prediction Model

Train Data

LSTM Encoder-Decoder for M1

M1, M3, M4

LSTM Encoder-Decoder for M2

M2, M3, M4

LSTM Encoder-Decoder for M3

M1, M2, M3

LSTM Encoder-Decoder for M4

M1, M2, M4

(11)
$d_{i}=\sqrt{(x_{pred,\:i}-x_{true,\:i})^{2}+(y_{pred,\:i}-y_{true,\:i})^{2}}$

$i = 1,\: 2,\: ...,\:n$

(12)
RMSE =$\sqrt{\dfrac{1}{{N}\times{n}}\sum_{{j}=1}^{{N}}\sum_{{i}=1}^{{N}}{d}_{{i},\:{j}}^{2}}$

표 4. ISL 위치에 따른 스니펫 수

Table 4. The number of snippets according to the ISL location

ISL location

[m]

M1 test snippet

M2 test snippet

M3 test snippet

M4 test snippet

88

1,498

845

645

1,597

90

1,256

745

769

1,431

92

1,033

643

627

1,260

94

815

539

497

1,081

96

601

430

372

893

표 5. 기준 모델의 예측 오차

Table 5. Baseline’s maneuver prediction error

Maneuver

ISL location [m]

M1

M2

M3

M4

RMSE

[m]

MAE

[m]

RMSE

[m]

MAE

[m]

RMSE

[m]

MAE

[m]

RMSE

[m]

MAE

[m]

88

1.589

1.232

1.493

1.072

1.163

0.986

1.298

0.913

90

1.596

1.236

1.457

1.050

1.157

0.996

1.287

0.908

92

1.593

1.231

1.425

1.032

1.160

1.007

1.275

0.904

94

1.624

1.243

1.405

1.016

1.165

1.016

1.235

0.881

96

1.661

1.255

1.413

1.019

1.180

1.027

1.131

0.834

표 6. 프레임워크의 예측 오차 및 거동 분류 정확도

Table 6. Framework’s maneuver prediction error and maneuver classification accuracy

Maneuver

ISL location [m]

M1

M2

M3

M4

SVM 정확도

[%]

RMSE

[m]

MAE

[m]

SVM 정확도

[%]

RMSE

[m]

MAE

[m]

SVM 정확도

[%]

RMSE

[m]

MAE

[m]

SVM 정확도

[%]

RMSE

[m]

MAE

[m]

88

48.35

1.721

1.429

67.97

1.860

1.503

63.41

1.414

1.052

100

1.236

0.885

90

79.51

1.465

1.168

100

1.180

0.956

63.91

1.388

1.043

100

1.197

0.860

92

79.01

1.485

1.197

100

1.085

0.908

63.70

1.398

1.053

100

1.147

0.834

94

100

1.421

1.104

100

0.993

0.863

99.36

0.914

0.748

100

1.072

0.802

96

100

1.447

1.125

100

0.916

0.823

100

0.865

0.715

100

0.946

0.751

(13)
$MAE =\dfrac{1}{N\times n}\sum_{j=1}^{N}\sum_{i=1}^{n}\vert d_{i,\: j}\vert$

그림. 6. 샘플 경로 예측 결과. (a) M2 샘플, (b) M3 샘플

Fig. 6. Trajectory prediction result. (a) M2 maneuver (b) M3 maneuver

../../Resources/kiee/KIEE.2023.72.11.1477/fig6.png

표 5는 실험 결과 얻어진 기준 모델의 ISL의 위치와 거동에 따른 예측 RMSE와 MAE를 보여준다. 표 6은 본 논문에서 제안한 프레임워크의 ISL의 위치와 거동에 따른 SVM의 분류정확도, RMSE, MAE를 보여준다. 실험 결과에 따르면 표 6에서 모든 거동에 대해서 ISL의 x-축 위치 좌표값이 증가할수록 SVM의 정확도가 100%에 수렴하는 것을 확인할 수 있다. 이는 거동 분류가 되는 시점을 늦출수록 거동 분류의 정확도가 향상되는 것을 의미한다. 이는 교차로 진입 후 거동의 특성이 점점 뚜렷해지는 그림 4의 경향과 일치한다.

또한, 프레임워크의 거동 분류의 정확도가 100%에 가까워질수록 모든 거동에 대해서 표 5의 기준 모델과 비교하여 RMSE와 MAE가 크게 감소하는 것을 확인할 수 있다. 특히, ISL 위치를 x-축 기준 96m로 설정하였을 경우 비정형 거동인 M2와 M3에서는 기준 모델과 비교해 RMSE가 각각 35.17%와 26.69%로 크게 감소하였다. 이는 기준 모델의 경우 비정형 거동을 상대적으로 데이터가 많은 정형 거동으로 예측하는 경향이 있음을 의미한다. 이는 M2, M3 샘플 예측 결과인 그림 6에서도 확인할 수 있다.

정형 거동에 대한 예측 오차도 기준 모델과 비교해 유의미하게 감소하였는데, 이는 비정형 거동을 배제한 예측을 수행함으로써 얻어진 결과이다. 이를 통해 선택적 학습 전략이 소규모 데이터 경로 예측에서 효과적임을 알 수 있다. 또한 제안된 프레임워크는 이러한 성능 향상 외에도 거동을 특정 값으로 분류할 수 있는 구조적인 장점을 가지고 있다. 이를 통해 제안된 프레임워크는 자율주행 차량의 주행 경로 계획에 더욱 신뢰성 있고 효과적인 정보를 제공할 수 있다.

그러나, ISL의 위치가 교차로 진입 지점 이전 혹은 직후에 위치하는 경우, 거동 분류의 정확도가 낮아지고 오차가 기존 모델보다 증가하는 것을 확인할 수 있다. 이는 잘못된 도착지점에 대해 높은 확신을 갖고 예측하기 때문이다. 이로 인해 거동을 빠르게 파악하는 것과 정확하게 파악하는 것 사이의 적절한 균형이 필요하다는 것을 알 수 있다.

5. 결 론

본 논문에서는 소규모 데이터셋에도 강건한 성능을 가지는 차량 거동 분류 기반 예측 프레임워크를 제안하였다. 이 프레임워크는 GPS를 장착하여 수집한 실제 차량 데이터를 기반으로 검증되었다. 본 프레임워크는 정형 거동뿐만 아니라 데이터 불균형성을 갖고 있는 비정형 거동에 대해서도 높은 분류 정확도를 보였다. 특히, 비정형 거동에 대한 경로 예측 성능은 기준 모델과 비교해 상당한 우위를 보였다. 더불어, 정형 거동에 대해서도 기존 모델과 비교하여 예측 성능이 유의미하게 향상되었다. 또한, 경로 예측 과정에서 단일 모델을 사용하기 때문에 처리 시간이 적어 실시간 예측에 효과적이다. 이러한 결과는 교차로 C-ITS의 RSU에 포함되어 자율주행 차량의 경로 계획에 안정적인 지원을 제공하는데 사용될 수 있다.

아직 도심 상황에 대한 차량 경로 데이터셋은 확보 가능한 양이 많지 않아 본 연구에서 역시 비교적 소규모의 데이터셋을 활용하여 결과를 제시하였으나, 표 6에 제시된 결과와 같이 상대적으로 데이터 양이 많은 M1, M4 거동에 대한 예측 정확도가 M2, M3의 경우와 유사하게 나타나 추가 데이터를 확보한다 해도 비슷한 패턴의 결과가 도출될 것으로 판단된다. 이는 비교적 적은 데이터셋을 사용하였지만 제안된 프레임워크가 충분히 효용성이 있음을 나타낸다.

그러나 프레임워크는 실험 결과 두 가지 한계점을 보였다. 첫째, 거동 분류가 부정확할 경우, 예측의 정확도가 기존 모델에 비해 감소하는 경향을 보였다. 이는 거동 분류의 정확성이 예측 성능에 큰 영향을 미치기 때문으로, 분류 과정에 있어 신중한 접근이 필요하다. 둘째, 거동 분류의 정확도가 증가할수록 거동의 분류가 지연되는 상충관계가 존재한다. 이는 결과적으로 자율주행 차량의 경로 계획의 지연으로 이어질 수 있다. 따라서, 빠른 거동 분류와 정확한 거동 분류 사이의 적절한 균형을 찾는 것이 중요하다고 판단된다. 이러한 측면을 고려하여 거동 분류와 경로 예측의 효율적인 조율 방안에 관한 후속 연구가 필요할 것으로 보인다.

Acknowledgements

This research was supported by National Research Foundation of Korea funded by the government (Ministry of Education) in 2023 (No.2022R1I1A3063354).

References

1 
Y. Hwang, S. B. Choi, Oct 2022, Awareness on Present and Future Trajectory of Vehicle Using Multiple Hypotheses in the Mixed Traffic of Intersection, in IEEE Transactions on Intelligent Transportation Systems, Vol. 23, No. 10, pp. 17690-17703DOI
2 
M. Hirata, M. Tsukada, K. Okumura, Y. Tamura, H. Ochiai, X. Défago, 2021, Roadside-Assisted Cooperative Planning using Future Path Sharing for Autonomous Driving, 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall) Norman OK USA, pp. 1-7DOI
3 
P. Liu, A. Kurt, Ü. Özgüner, 2014, Trajectory prediction of a lane changing vehicle based on driver behavior estimation and classification, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 942-947DOI
4 
N. Deo, M. M. Trivedi, 2018, Convolutional Social Pooling for Vehicle Trajectory Prediction, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Salt Lake City UT USA, pp. 1549-15498Google Search
5 
M. Liebner, M. Baumann, F. Klanner, C. Stiller, 2012, Driver intent inference at urban intersections using the intelligent driver model, 2012 IEEE Intelligent Vehicles Symposium, pp. 1162-1167Google Search
6 
A. Zyner, S. Worrall, E. Nebot, 2018, A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections, in IEEE Robotics and Automation Letters, pp. 1759-1764DOI
7 
Y. Jeong, S. Kim, K. Yi, 2020, Surround Vehicle Motion Prediction Using LSTM-RNN for Motion Planning of Autonomous Vehicles at Multi-Lane Turn Intersections, in IEEE Open Journal of Intelligent Transportation Systems, pp. 2-14DOI
8 
Yuntian Chen, 2020, Well log generation via ensemble long short‐term memory (EnLSTM) network, Geophysical Research Letters, Vol. 47, No. 23DOI
9 
E.A. Zanaty, 2012, Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification, pp. 177-183DOI
10 
K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, 2014, Learning phrase representations using RNN encoder–decoder for statistical machine translationDOI
11 
H. Alla, L. Moumoun, Y. Balouki, 2021, A multilayer perceptron neural network with selective-data training for flight arrival delay prediction, Sci Program Article 5558918Google Search
12 
S. Hochreiter, J. Schmidhuber, 1997, Long short-term memory, Neural Computation, Vol. 9, No. 8, pp. 1735-1780Google Search

저자소개

홍윤성 (Younseung Hong)
../../Resources/kiee/KIEE.2023.72.11.1477/au1.png

Younseung Hong received the B.S. degrees in Mechanical Engineering from Jeonbuk National University, South Korea, in 2023.

Currently he is pursuing the M.S in Mechanical Engineering from Jeonbuk National University, South Korea.

His current research interests include C-ITS, vehicle dynamics.

홍석주 (Seokju Hong)
../../Resources/kiee/KIEE.2023.72.11.1477/au2.png

Seokju Hong received the B.S. degrees in Mechanical Engineering from Jeonbuk National University, South Korea, in 2023.

Currently he is pursuing the M.S in Mechanical Engineering from Jeonbuk National University, South Korea.

His current research interests include autonomous vehicle control based on vehicle dynamics.

강병주 (Byeongju Kang)
../../Resources/kiee/KIEE.2023.72.11.1477/au3.png

Byeongju Kang received the B.S. and M.S. degrees in Mechanical Engineering from Kunsan National University, Gunsan, South Korea, in 2014 and 2017, respectively.

He is currently a researcher with the AI-Bigdata Research Centre, Korea Automotive Technology Institute.

His current research interests include situation awareness and control of autonomous vehicle.

황윤형 (Yunhyoung Hwang)
../../Resources/kiee/KIEE.2023.72.11.1477/au4.png

Yunhyoung Hwang received the B.S. degree in Electrical and Computer Engineering from Hanyang University, Seoul, South Korea, the M.S. degree from the Graduate School of Automotive Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea, and the Ph.D. degree in mechanical engineering from KAIST, in 2021.

From 2008 to 2021, he was with the AI-Bigdata Research Centre, Korea Automotive Technology Institute.

He is currently an associate professor with the Department of Mechanical Engineering, Jeonbuk National University.

His current research interest includes decision and control for autonomous vehicles.

He is a member of the Korean Society of Automotive Engineers.