• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid




Double squirrel cage, Induction generator, Locked rotor current, Starting current, Voltage drop

1. 서 론

탄소 저감을 구현하기 위한 다양한 형태의 신재생에너지 개발 보급이 점차 확대되고 있다. 재생에너지의 한 부분인 소수력은 활용이 가능한 많은 잠재량을 지니고 있다. 특히 소규모 하천이나 상하수도 관로 등에서는 출력은 낮으나 이용률이 높은 편이다[1,2]. 이들 미니급 소수력 발전소의 개발과 보급에 유지보수를 쉽게 구현할 수 있는 발전소의 설계와 운전이 매우 필요하다. 이와 같은 조건에 가장 합리적인 발전기로서 동기발전기보다 유도발전기가 더 적합하지만[3-8], 기동할 때 발생하는 높은 전류는 시스템에 큰 전압강하를 일으키는 단점도 가지고 있다[3] [4] [5] [7] [9] [10].

계통에 연계된 유도발전기는 정지상태에서 수차에 의한 기계 에너지로 정지상태인 회전자를 동기속도 이상으로 회전한 다음 계통에 연결하는 과정을 거친다. 이때 유도기는 기동해서 동기속도에 도달하기 전에 전동기의 운전 영역을 그리고 동기속도 이상에서는 발전기의 운전 영역을 거칠 때 일시적으로 나타나는 높은 전류와 그 지속시간은 배전선로 또는 간선에 큰 전압강하로 나타나기 때문에 다른 기기의 동작을 어렵게 할 수 있다[5] [6] [9] [10] [11] [12].

유도기는 회전자가 동기속도 이상으로 운전하면 발전기로 이용하는 것이 가능하지만, 정지상태인 유도기를 기동할 때 발생하는 높은 전류로 전압강하가 커질 수 있다. 농형 유도기는 회전자 형상에 따라 기동전류가 다른 것은 전압의 변동과 토크의 크기에도 영향을 줄 수 있다. 그래서 유도기를 기동할 때 전압강하를 일정한 범위 이내로 유지하면서 안정적으로 사용하기 위해서는 설계할 때 구속 회전자 전류(LRC; Locked Rotor Current)의 배수를 어떻게 설정하면 전압강하를 더 줄일 수 있는지에 대한 연구가 필요하다.

본 연구에서는 저압으로 발전해서 배전 선로에 연결할 때 이중 농형 유도기의 구속 회전자 전류의 배수를 다르게 설정할 경우 발생하는 전류에 의한 전압강하와 유효전력과 무효전력의 크기 그리고 역률이 어떻게 변동하는지를 분석하였다.

2. 유도발전기 계통 구성도

2.1 계통 구성도

유도기는 대개 동기속도 근처에서 전동 모드나 발전 모드로 운전이 가능하다[5,6,9]. 이 유도기는 항상 계통과 연계되어 있으므로 자화에 필요한 무효전력을 전원으로부터 공급받고 있다[9,11].

그림 1은 유도발전기(IG)가 전원에 해당하는 변전소, 배전 선로(D/L), 수용가 변압기(TR)를 거쳐 말단에 연결한 회로도이다. 유도발전기를 계통에 연결할 때 변압기의 용량과 퍼센트 임피던스는 전압강하에 대한 허용범위를 고려하여 결정하는 것은 매우 중요하다.

그림 1. 유도기의 연결 구성도

Fig. 1. Connection diagram of induction machine

../../Resources/kiee/KIEE.2024.73.7.1252/fig1.png

유도기를 기동할 때 전류, 역률 그리고 변압기의 퍼센트 임피던스를 알고 있는 경우 전압강하를 고려한 변압기[11]의 적정 용량은 식 (1)과 같다[10].

(1)
$TR =\dfrac{\%Z}{\triangle E}\times\left(\dfrac{\sqrt{3}\times V\times I_{s}}{pf}\right)$

여기서 $V$ 는 단자전압이고, $I_{s}$ 기동하거나 투입할 때 발생하는 전류이며, $pf$ 는 역률이고, $\triangle E$ 는 전압강하율이다.

3상, 4극, 380V, 75㎾ 유도기의 경우 기동전류와 전압강하를 고려할 때 식 (1)로 변압기의 용량을 구하면 표준 용량은 500kVA가 해당한다.

유도기가 전동 모드로 운전하거나 발전 모드로 운전할 때 발생하는 높은 전류에 의해 발생하는 전압품질의 저하를 줄이기 위한 전압강하는 10% 이하가 되도록 권고하고 있다[9,14].

유도발전기는 배전 선로에 연결할 때 전류에 의한 전압강하는 고려할 필요가 있다. 유도기의 기동전류는 회전자 형상에 따라 다르므로 보통 농형의 회전자 대신에 이중 농형의 회전자를 선택해서 전류를 낮추어서 전압강하를 줄일 수 있도록 설계에 적용하고 있다[9].

2.2 유도발전기의 수학적 모델링

그림 2는 이중 농형 유도기의 등가 회로도이다[9].

그림 2. 이중 농형 유도기의 등가회로도

Fig. 2. Equivalent circuit diagram of double-cage induction machine

../../Resources/kiee/KIEE.2024.73.7.1252/fig2.png

여기서, $I_{s},\: I_{m}$은 각각 고정자 전류, 자화전류이고, $I_{1},\: I_{2}$는 회전자의 위치에 따른 전류이며, $X_{sd,\: }X_{m,\: }X_{1d},\: X_{2d}$ 는 각각 고정자, 자화 및 회전자의 위치에 따른 리액턴스이고, $R_{1,\:}R_{2}$ 는 회전자의 안쪽 및 바깥쪽 저항이다[9]. 그리고 $s$는 슬립이고, $V_{s}$는 고정자 전압이다[9].

그림 2에서 이중 농형 회전자의 병렬 임피던스 $Z_{p}(s)$는 식 (2)와 같다[9].

(2)
$Z_{p}(s)=\dfrac{1}{\dfrac{1}{j X_{m}}+\dfrac{1}{\dfrac{R_{1}}{s}+j X_{1d}}+\dfrac{1}{\dfrac{R_{2}}{s}+j X_{2d}}}$

위의 식 (2)의 임피던스로 고정자에 흐르는 전류는 식 (3)와 같이 나타낼 수 있다[8,9].

(3)
$I_{s}(s)=\dfrac{V_{s}}{R_{s}+j X_{sd}+Z_{p}(s)}$

이중 농형 회전자의 안쪽과 바깥쪽에 흐르는 전류는 각각 식 (4) 및 식 (5)와 같다[9].

(4)
$I_{1}(s)=-\dfrac{Z_{p}(s)\times I_{s}(s)}{\dfrac{R_{1}}{s}+j X_{1d}}$
(5)
$I_{2}(s)=-\dfrac{Z_{p}(s)\times I_{s}(s)}{\dfrac{R_{2}}{s}+j X_{2d}}$

자속 형성에 사용되는 자화전류는 식 (6)와 같이 고정자 전류와 역률의 관계로부터 구할 수 있다[9].

(6)
$I_{m}=I_{s}\sin\theta =I_{s}\times\sqrt{1-pf^{2}}$

고정자에 전달되는 유효전력($P$)과 무효전력($Q$) 및 역률($pf$)은 각각 아래 식과 같다[9].

(7)
$P=Re\left(\sqrt{3}\times V\times I_{s}\right)$
(8)
$Q=Im\left(\sqrt{3}\times V\times I_{s}\right)$
(9)
$pf=\dfrac{P}{\sqrt{P^{2}+Q^{2}}}$

이중 농형 유도기의 토크는 회전자의 안쪽과 바깥쪽 저항 각각에 흐르는 전류로 구할 수 있다[9].

(10)
$T_{IG}(s)=\dfrac{3p}{w_{r}}\left(I_{1}(s)^{2}\times\dfrac{R_{1}}{s}+I_{2}(s)^{2}\times\dfrac{R_{2}}{s}\right)$

여기서 $p$는 유도발전기 극의 수 이고, $w_{r}$는 회전자의 각속도이다.

유도기는 수차 등에 의한 기계적인 에너지로 기동하여 동기속도에 도달한 이후에 발전 모드로 운전할 때의 운동방정식은 식 (11)와 같이 토크, 관성 모멘트 및 기계적인 각속도로 표현할 수 있다.

(11)
$T_{M}=J\left(\dfrac{2}{p}\right)\dfrac{dw_{r}}{dt}+Dw_{r}+T_{IG}$

여기서, $J$ 는 관성 모멘트이며, $T_{M}$ 는 각각 발전기에 연결된 수차와 같은 기계적인 토크이며, $T_{IG}$ 는 유도발전기의 토크이고, $D$ 는 마찰로 발생하는 손실에 해당하는 점성 계수이다[9].

3. 동작 특성 분석

본 연구에서 적용한 3상, 380V, 4극, 75㎾, 이중 농형(double cage) 회전자를 가진 유도기의 제작사에서 제공한 명판에 표시된 파라미터는 표 1과 같다.

표 1과 같은 사양을 가진 유도기를 회전자 구속 전류의 배율을 4, 5, 6, 7[pu]로 변화할 때 이중 농형 회전자의 고정자와 회전자에 대한 저항과 인덕턴스는 표 2와 같다. 구속 회전자 전류의 배율에 따라 고정자와 회전자의 저항 및 리액턴스의 비율이 달라진다.

표 1 유도기의 파라미터

Table 1 Induction machine parameter

Parameters

Values

Full load efficiency [%]

95.4

Full load power factor [%]

82.5

Full load current [A]

144.8

Full load torque [㎏·m]

40.9

표 2 유도발전기의 저항 및 인덕턴스

Table 2 Resistance and inductance of induction generator

Parameters

Values

Multiplier of locked rotor current [pu]

4

5

6

7

Stator

Resistance [Ω]

0.046782

0.047362

0.047715

0.047983

Leakage

inductance [mH]

0.283

0.2697

0.2466

0.2238

Magnetizing inductance [mH]

9.732

8.571

7.98

7.648

Rotor

Outer resistance [Ω]

0.216391

0.137326

0.093716

0.067432

Inner resistance [Ω]

0.015451

0.016338

0.01745

0.018953

Outer leakage inductance [mH]

0.283

0.2697

0.2466

0.2238

Inner leakage inductance [mH]

1.025

0.6793

0.4915

0.3819

표 2에서 구속 회전자 전류의 배율이 증가함에 따라 고정자와 회전자의 안쪽 저항은 약간 증가하는 것에 비해 회전자의 바깥쪽 저항은 반대로 점차 감소하는 것을 알 수 있다. 또한 회전자의 인덕턴스도 같이 감소하는 패턴을 나타내고 있다. 이같이 구속 회전자 전류의 배율이 서로 다른 경우 고정자와 회전자의 저항과 인덕턴스의 변화가 존재할 때 유도기를 전동기 운전 영역과 발전기 운전 영역에서 동작하면 전류 및 전압 그리고 전력과 역률이 어떻게 변화하는지에 대해 모의 분석하였다. 유도기를 기동해서 속도를 높여 정상적으로 운전까지 발생하는 과도상태와 정상상태의 동작 변화를 확인하기 위해 전자계 과도해석 프로그램(EMTP)을 이용하였다[15].

그림 3표 1에서 제시된 유도기를 구속 회전자 전류가 4배(○)에서 7배(×)로 서로 다르게 설계해서 1초에서 기동을 시작하여 전동기 운전 모드를 거쳐 발전기로 운전하는 동안 토크의 변화를 나타낸 것이다. 전동 모드로 운전할 때와 발전 모드로 운전할 때 토크의 부호는 서로 반전되고, 구속 회전자 전류의 배수에 따라 전동기에서 발전기로 운전할 때 토크의 변화가 조금씩 차이가 남을 알 수 있다. 구속 회전자 전류의 배수가 높아질수록 최대 토크의 크기가 높으나 빠른 시간에 안정성을 확보한다.

그림 4표 1에 제시한 유도기로 구속 회전자 전류를 4배(○)에서 7배(×)로 서로 다르게 설계하여 수차 등에 의해 발전기를 기동해서 속도를 높여 동기속도 근처에서 계통에 연결하는 동안 발생한 전류의 변화를 나타난 것이다.

그림 3. 전류 배율에 따른 토크 변화

Fig. 3. Torque change depending on current multiplier

../../Resources/kiee/KIEE.2024.73.7.1252/fig3.png

그림 4. 전류 배율에 따른 계통 연결 시 전류 변화

Fig. 4. Current change at grid connection depending on current multiplier

../../Resources/kiee/KIEE.2024.73.7.1252/fig4.png

그림 4에서 유도발전기는 1초에서 시동하여 먼저 전동 모드로 운전하고서 동기속도 이상이 되었을 때 계통에 연결하여 발전 모드로 운전하는 동안에 회전자 구속 전류의 배율이 높아질수록 기동을 시작하는 동안에 발생하는 전류의 크기가 점차 커지는 것을 알 수 있다. 구속 회전자 전류의 배수가 높아질수록 빠른 시간에 안정적인 운전에 이르는 것을 알 수 있다. 표 3은 구속 회전자 전류의 배율이 서로 다른 유도발전기를 계통에 연결하는 순간에 과도전류의 크기와 발전기로 정상적인 운전이 이루어질 때 전류를 모의한 결과이다. 계통에 연결할 때 순간적으로 발생하는 전류의 크기는 구속 회전자 전류의 배율보다 약간 더 높다. 이와 같은 전류의 변화는 전압에도 영향을 미치게 된다.

그림 5표 1에서 제시한 유도발전기로 그림 1과 같은 계통에 연결할 때 구속 회전자 전류의 배율을 4배에서 7배로 서로 다른 조건의 발전기로 수차 등에 의해 기동하여 전동 모드로 운전한 다음 발전 모드로 전환하여 계통에 연계하는 순간에 구속 회전자 전류의 배율에 따라 발생하는 전압의 변화를 나타낸 것이다.

표 3 계통 연결시 전류 변화

Table 3 Current change when connected to grid

구분

4배

5배

6배

7배

과도[A]

733

907

1067

1210

정상[A]

146

145

145

145

과도/정상

[pu]

5

6.2

7.3

8.3

그림 5. 전류 배율에 따른 전압강하 변화

Fig. 5. Change of voltage drop depending on current multiplier

../../Resources/kiee/KIEE.2024.73.7.1252/fig5.png

그림 5와 같은 전압의 변화를 발전기로 운전하기 전과 계통 연결 및 정상적인 운전에서 전압강하와 전압강하율을 표 4로 나타내었다.

표 4 계통 연결 시 전압변화

Table 4 Voltage change when connected to grid

구분

4배

5배

6배

7배

투입 전[V]

380

380

380

380

투입 시[V]

353

346

340

335

정상 시[V]

377

377

377

377

전압강하[V]

27

34

40

45

전압강하율[%]

7.1

8.9

10.5

11.8

그림 5에서와 같이 전류의 배율이 낮으면 전압강하는 낮고, 전류의 배율이 높으면 전압강하는 커진다. 전압강하가 커지는 것에 대해 전압강하의 지속시간은 짧아지게 된다. 구속 회전자 전류의 배율은 4배(353V)와 5배(346V)는 전압강하가 10% 이내이지만, 전류의 배율이 6배(340V)와 7배(335V)가 될 경우는 계통에 연결할 때 전압강하가 10%를 조금 넘어선다. 이런 운전 조건의 경우 계통에 연결할 때 전압강하를 더 낮출 수 있는 운전하는 방법을 고려해야 한다.

다음 그림 6은 구속 회전자 전류의 배율을 4배에서 7배까지로 변경시켜 기동해서 전동 모드로 운전한 다음 동기속도 이후 발전 모드로 전환해서 계통에 연결할 때 유효전력의 변화를 나타낸 것이다. 전동 모드와 발전 모드의 운전 영역에서 유효전력의 흐름은 서로 반대로 된다. 발전 모드로 운전하기에 앞서 전동 모드로 운전하는 짧은 운전 영역(약 1.5초 정도)에서 계통에서 유효전력을 공급받지만, 회전자가 동기속도 이상에서는 전력의 방향이 반전되어 역으로 계통에 전력을 공급하게 된다. 이때 전동 모드로 운전하는 영역에서 기동전류의 배율이 높을수록 계통으로 공급받아야 하는 유효전력의 크기는 크고, 기동전류의 배율이 낮으면 계통으로부터 받아야 하는 전력이 낮은 것을 알 수 있다. 기동전류의 배율이 낮으면 전동 모드로 운전하는 시간이 약간 더 지속함을 알 수 있다.

그림 6. 전류 배율에 따른 유효전력 변화

Fig. 6. Change of active power depending on current multiplier

../../Resources/kiee/KIEE.2024.73.7.1252/fig6.png

다음은 표 1에서 제시한 유도기가 발전 모드로 전환하기 전에 전동 모드로 운전하는 영역에서 역률에 영향을 주는 무효전력의 변화가 구속 회전자 전류의 배율에 따라 어떻게 달라지는 지를 그림 7에 나타내었다. 그림 7은 구속 회전자 전류의 배율은 4배에서 7배까지로 변경할 때 계통으로부터 공급받는 무효전력의 변화를 나타낸 것으로써 구속 회전자 전류의 배율이 높을수록 무효전력이 커지는 것을 알 수 있다. 이는 발전 모드로 운전하기 전에 기동전류의 배율이 높으면 더 높은 무효전력을 계통으로부터 공급받아야 하기 때문이다.

구속 회전자 전류의 배율이 서로 다를 때 전동 모드로 운전할 때 그림 6의 유효전력에 비해 그림 7에서의 무효전력이 더 크게 발생하므로 이 운전 영역에서는 역률이 정상적인 운전에 비해 매우 낮아지게 된다.

그림 7. 전류 배율에 따른 무효전력 변화

Fig. 7. Variation of reactive power depending on current multiplier

../../Resources/kiee/KIEE.2024.73.7.1252/fig7.png

유도기는 전동 모드로 운전하거나 발전 모드로 운전하는 것에 상관없이 항상 여자를 위해서는 무효전력이 필요하다. 계통 연계형의 경우 발전한 전력을 역으로 보내기 위해서는 동기속도 이전에 전동 모드의 운전이나 동기속도 이상으로 운전할 때 모두 무효전력이 필요하다. 유도기에서 구속 회전자 전류의 배율에 따라 발전 모드 운전 영역에 앞서 전동 모드 운전 영역에서부터 달라지는 역률의 변화는 그림 8과 같다. 유도기가 전동 모드로 운전할 때와 발전 모드로 운전할 때 역률의 부호는 서로 반대이다. 유도기가 전동 모드로 기동하는 순간에 역률은 정상적인 속도로 운전할 때보다도 낮지만, 발전 모드로 전환한 다음 운전할 때는 역률이 정격속도에 해당하는 크기로 전개됨을 알 수 있다.

그림 8. 전류 배율에 따른 역률 변화

Fig. 8. Change of power factor depending on current multiplier

../../Resources/kiee/KIEE.2024.73.7.1252/fig8.png

유도발전기를 운전해서 계통에 연결하고자 할 때 전압품질에 대한 문제를 잘 고려하여야 한다. 계통 연계에서나 기동하는 과정에서 발생하는 높은 전류에 의해 전압강하가 허용범위를 넘어서지 않도록 기동전류에 대한 크기를 미리 파악하여 선정하면 전압강하에 대한 문제점을 미리 해결할 수 있을 것이다.

4. 결 론

본 논문에서는 같은 용량의 유도기를 회전자 구속 전류 즉, 기동전류의 크기에 따라 발전기로 운전하여 계통에 투입할 때 전류, 전압강하, 전력 및 역률 등의 변화를 분석하였다. 계통 연계형에서 유도기가 발전 모드로 운전하기 전에 전동 모드로 운전하는 동안에 기동전류의 배율에 따라 전압강하의 크기와 지속시간에 차이가 존재하며, 일정 배율 이상에서는 전압강하의 허용범위를 초과하는 것을 알 수 있었다. 또한 구속 회전자 전류의 배율이 높으면 발전 모드로 운전하기 전에 자화에 필요한 무효전력이 커서 역률에 나쁜 영향을 주고 있다는 것도 확인할 수 있었다.

본 연구 결과는 마이크로급 소수력에서 유도발전기를 설계하여 적용할 때 적정한 기동전류의 고려로 전압강하를 줄일 수 있을 것으로 판단된다.

References

1 
MOKE, “Environmentally Friendly Small Hydro Resource Research and Utilization Technology Plan,” 2006.URL
2 
MOKE & KEMCO, “New & Renewable Energy Report,” 2018.URL
3 
Jack J. Fritz, “Small and Mini Hydropower Systems,” McGrawHill Book Company, USA, 1984.URL
4 
K. S. Pankaj, J. P. Nelson, “Application Guidelines for Induction Generators,” in Proc. International Conference on Electrical Machines and Drives, Milwaukee, Wisconsin, Paper WC1/5.1–WC1/5.3, May 18-21, 1997.DOI
5 
D. S. Henderson,“Synchronous or induction Generators?-The choice for small scale generation,” IEE Conf., Pub., pp.146~149, 1996.DOI
6 
M. Godoy Simoes & Felix A. Farret, “Renewable Energy Systems-Design and Analysis with Induction Generators,” CRC Press, 2004.URL
7 
Min-ho Park, “Induction machines,” Dong Myeong Publishers, 2003.URL
8 
Paul L. Cochran, “Poly Induction Motors-Analysis, Design and Application,” Marcel Dekker, 1989.URL
9 
Dong-Ju Lee and Jong-Gyeum Kim, “A Study on Characteristic Change in the Grid Connection of Single bar, Deep bar and Double-cage Rotor Induction Generators,” The Transactions of the Korean Institute of Electrical Engineers, vol. 72, no. 6, pp.724-729, Jun. 2023.URL
10 
Jong-Gyeum Kim, “Study on the Current and Voltage Drop When Starting Induction Generator According to the Difference in Transformer Impedance,” KIEE, vol. 71, no. 5, pp. 760~765, 2022.05.URL
11 
Jong-Gyeum Kim, “Study on Voltage Drop, Transformer Capacity and Impedance During Induction Motor Starting,” KIEE, vol. 71, no. 4, pp. 669~674, 2022.04.URL
12 
John R. Smith & Meng J. Chen, “Three-Phase Electrical Machine Systems-Computer Simulation,” John Wiley & Sons, 1994.URL
13 
Dong-Ju Lee, Jong-Gyeum Kim, “Research on Power Factor Compensation Technology When Torque Fluctuates in Induction Motors,” KIEE, vol. 71, no. 5, pp. 797~802, 2022.05URL
14 
KEPCO, “Power Distribution Practice-Ⅲ,” Mar. 2000.URL
15 
H.W. Dommel, “Electromagnetic Transients Program. Reference Manual: (EMTP) Theory Book,” BPA, 1986.URL

저자소개

김종겸 (Jong-Gyeum Kim)
../../Resources/kiee/KIEE.2024.73.7.1252/au1.png

Jong‑Gyeum Kim received his B.S degree in Electrical Engineering from Dong-A University, Busan, Korea, in 1984, and M.S, and Ph.D degrees in Electrical Engineering from Chungnam National University in 1991 and 1996 respectively. In 1987, he worked for KT, and from 1988 to 1996, he worked for K-water. He was a Visiting Professor at the Wisconsin State University from 2013 to 2014 and the University of Idaho from 2022 to 2023. He has been working at Gangneung-Wonju National University since 1996. His research interest is the design and implementation of Energy Conversion System and Power Quality. He is fellow member of the KIEE.