Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Department of Semiconductor System Engineering, Kumoh National Institute of Technology, Republic of Korea. E-mail : 20246116@kumoh.ac.kr, seojeongyun@kumoh.ac.kr, darkjyuk@kumoh.ac.kr)



Convolution layer, Hardware, Verilog HDL, Deep learning

1. ์„œ ๋ก 

์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ๊ณผ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์˜ ๊ธ‰์†ํ•œ ๋ฐœ์ „์€ ๋‹ค์–‘ํ•œ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ๋ถ„๋ฅ˜ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์ˆ˜์š”๋ฅผ ๋งŽ์ด ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. ๋‹ค์–‘ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ์ค‘์—์„œ๋„ ์ฝ˜๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ (Convolutional Neural Network)๋Š” ์ด๋ฏธ์ง€ ์ธ์‹ (Recognition) ๋ฐ ๋ถ„๋ฅ˜ (Classification) ๋“ฑ ๋‹ค์–‘ํ•œ ์ปดํ“จํ„ฐ ๋น„์ „ ๊ณผ์ œ์—์„œ ํƒ์›”ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋กœ ๊ฐ๊ด‘๋ฐ›์•„ ์™”๋‹ค [1-7]. ์ฝ˜๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ๋Š” ๋‹ค์ฐจ์› ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์„ ์ถ”์ถœํ•˜๊ณ  ํ•™์Šตํ•˜๋Š” ๋ฐ ๋งค์šฐ ํšจ๊ณผ์ ์ด๋ฉฐ, ํŠนํžˆ ์˜์ƒ ๋ฐ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.

ํ•˜์ง€๋งŒ, ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ๊ฐ€ ๊ณ ๋„ํ™”๋˜๋ฉด์„œ ๋ชจ๋ธ์˜ ๋ณต์žก์„ฑ์ด ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ํ•˜๋‚˜์˜ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ์˜ ์—ฐ์‚ฐ์— ๋ง‰๋Œ€ํ•œ ๊ณ„์‚ฐ ์ž์›์ด ์š”๊ตฌ๋˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ดˆ๋ž˜ํ•˜๊ณ  ์žˆ๋‹ค. ์ปดํ“จํ„ฐ ๋น„์ „์—์„œ์˜ ๋Œ€ํ‘œ์ ์ธ ์ž‘์—…์ธ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•ด ํ•„์š”ํ•œ ์ฝ˜๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ์™€ ์™„์ „ ์—ฐ๊ฒฐ ๋„คํŠธ์›Œํฌ (Fully-connected network)๋Š” ๋‹ค์ˆ˜์˜ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต๊ณผ ์™„์ „ ์—ฐ๊ฒฐ ์ธต์œผ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค. ๊ฐ ์ธต์—์„œ๋Š” ๊ฐ€์ค‘์น˜ ๊ฐ’๊ณผ ์ธต์˜ ์ž…๋ ฅ๊ฐ’์— ์˜ํ•œ ๋‹ค์ˆ˜์˜ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ๊ณผ ํ–‰๋ ฌ ์—ฐ์‚ฐ์ด ์ˆ˜ํ–‰๋œ๋‹ค. ์ตœ๊ทผ ๊ฐœ๋ฐœ๋˜๋Š” ๋„คํŠธ์›Œํฌ๋“ค์€ ์ˆ˜๋ฐฑ๋งŒ์˜ ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ์— ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ๊ณผ ํ–‰๋ ฌ ์—ฐ์‚ฐ์—์„œ๋Š” ์ˆ˜๋ฐฑ๋งŒ ์ด์ƒ์˜ ๊ณฑ๊ณผ ํ•ฉ ์—ฐ์‚ฐ (Multiply-ACcumlate, MAC)์ด ๋ฐœ์ƒํ•œ๋‹ค[8,9]. ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ๋ฅผ ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ ์ ์šฉํ•˜์—ฌ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ •ํ™•๋„ ์„ฑ๋Šฅ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ MAC ์—ฐ์‚ฐ์„ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์–ด์•ผ๋งŒ ํ•œ๋‹ค.

์ฝ˜๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ์™€ ๊ฐ™์€ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ์˜ ํ•™์Šต์—์„œ ์š”๊ตฌ๋˜๋Š” ์ˆ˜๋งŽ์€ MAC ์—ฐ์‚ฐ์„ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋ณ‘๋ ฌ ์—ฐ์‚ฐ์— ํŠนํ™”๋œ GPU๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋‹ค. GPU๋Š” ๋‹ค์ˆ˜์˜ ์—ฐ์‚ฐ ์ฝ”์–ด๋ฅผ ํ†ตํ•ด ์ˆ˜๋งŽ์€ MAC ์—ฐ์‚ฐ์„ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ GPU ๊ตฌ์กฐ์˜ ํŠน์ง•์œผ๋กœ ์ธํ•ด ์ธ๊ณต์ง€๋Šฅ (Artificial Intelligence, AI)์˜ ๋”ฅ๋Ÿฌ๋‹ ๋ถ„์•ผ์—์„œ ํ•™์Šต์„ ์œ„ํ•ด ๋งŽ์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค.

๋”ฅ๋Ÿฌ๋‹ ๋ถ„์•ผ๋Š” GPU์— ์˜ํ•œ ๋น ๋ฅธ ํ•™์Šต์„ ํ†ตํ•ด ๊ด„๋ชฉํ•  ๋งŒํ•œ ์„ฑ์žฅ์„ ๋‹ฌ์„ฑํ•˜์˜€์œผ๋ฉฐ ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹์„ ๊ธฐ๋ฐ˜ํ•œ ๋‹ค์–‘ํ•œ ์‹ค์ƒํ™œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์ด ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ Open AI์‚ฌ์—์„œ ์ œ๊ณตํ•˜๋Š” Chat-GPT์™€ ๊ฐ™์€ ์ƒ์„ฑํ˜• AI ๋ฐ ํ…Œ์Šฌ๋ผ์˜ ์นด๋ฉ”๋ผ ๋น„์ „์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ž์œจ์ฃผํ–‰๊ณผ ๊ฐ™์€ ๋”ฅ๋Ÿฌ๋‹์„ ๊ธฐ๋ฐ˜ํ•œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ ์ธ๊ฐ„์˜ ์‚ถ์„ ์ง์ ‘์ ์œผ๋กœ ๋ณ€ํ™”์‹œํ‚ค๊ณ  ์žˆ๋‹ค [10-13].

ํ•˜์ง€๋งŒ, ์ธ๊ณต์ง€๋Šฅ ๋ถ„์•ผ๋Š” GPU ์‚ฌ์šฉ์„ ํ†ตํ•ด ๊ด„๋ชฉํ•  ๋งŒํ•œ ์„ฑ์žฅ์„ ๋‹ฌ์„ฑํ•˜์˜€์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์‹ค์ œ ํ™˜๊ฒฝ์œผ๋กœ์˜ ์ ์šฉ์— ์žˆ์–ด GPU์˜ ์‚ฌ์šฉ์€ ํ•œ๊ณ„๋ฅผ ๋งž๊ณ  ์žˆ๋‹ค. ์•ž์„œ ์–ธ๊ธ‰ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜๋“ค์— ์žˆ์–ด ์‹ค์‹œ๊ฐ„ ๋™์ž‘ ๋ฐ ์ „๋ ฅ ํšจ์œจ์€ ํ•„์ˆ˜์ ์ด๋‹ค. ํ•˜์ง€๋งŒ, GPU์˜ ๋ณ‘๋ ฌ ์—ฐ์‚ฐ ๊ตฌ์กฐ๋Š” ๊ทธ๋ž˜ํ”ฝ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด ๋ฒ”์šฉ์ ์œผ๋กœ ์„ค๊ณ„๋œ ๊ฒƒ์œผ๋กœ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ๋™์ž‘์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์ง€ ์•Š๋‹ค. ๋‹ค์‹œ ๋งํ•ด, ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ์˜ ์—ฐ์‚ฐ์„ ์œ„ํ•ด ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์ง€๋งŒ ํ•ด๋‹น ์—ฐ์‚ฐ์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์ง€ ์•Š๋‹ค. ๋˜ํ•œ ์ „๋ ฅ ์†Œ๋ชจ๊ฐ€ ๋งŽ์œผ๋ฉฐ ์ฐจ์ง€ํ•˜๋Š” ๋ถ€ํ”ผ ๋˜ํ•œ ํฌ๊ธฐ์— GPU๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ๋ฅผ ์‹ค์ œ ํ™˜๊ฒฝ์— ์ ์šฉํ•˜๋Š” ๊ฒƒ์€ ์‹œ์Šคํ…œ์˜ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ๋น„ํšจ์œจ์ ์ผ ์ˆ˜ ์žˆ๋‹ค [14].

๊ฒฐ๊ณผ์ ์œผ๋กœ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ์— ์ตœ์ ํ™”๋œ ํ•˜๋“œ์›จ์–ด ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋ฉฐ, ์ตœ๊ทผ ์ด๋ฅผ ์œ„ํ•œ AI ํ•˜๋“œ์›จ์–ด ๊ฐ€์†๊ธฐ ๊ฐœ๋ฐœ์ด ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์†๊ธฐ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ์˜ ํ•ต์‹ฌ ์—ฐ์‚ฐ์ธ ํ–‰๋ ฌ ๊ณฑ์…ˆ ๋ฐ ํ•ฉ์„ฑ ๊ณฑ์…ˆ ๋“ฑ์˜ MAC ์—ฐ์‚ฐ์— ์ตœ์ ํ™”๋œ ๋ณ‘๋ ฌ ์—ฐ์‚ฐ ๊ตฌ์กฐ๋ฅผ ํ•˜๋“œ์›จ์–ด๋กœ ์„ค๊ณ„ํ•จ์œผ๋กœ์จ ์‹ค์‹œ๊ฐ„ ์ถ”๋ก  ์„ฑ๋Šฅ์„ ํ–ฅ์ƒํ•˜๊ฒŒ ์‹œํ‚ด๊ณผ ๋™์‹œ์— ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ์ค„์ด๊ณ ์ž ํ•œ๋‹ค.

AI ํ•˜๋“œ์›จ์–ด ๊ฐ€์†๊ธฐ ์„ค๊ณ„์˜ ์ด์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ์กด GPU๋ฅผ ์‚ฌ์šฉํ•œ ์ถ”๋ก ์€ ๋”ฅ๋Ÿฌ๋‹ ์†Œํ”„ํŠธ์›จ์–ด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ์ˆœ์ฐจ์ ์œผ๋กœ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ์ธ๊ฐ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ•˜๋“œ์›จ์–ด์˜ ํŒŒ์ดํ”„๋ผ์ด๋‹ ํŠน์ง•์„ ์‚ฌ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ด๊ฒƒ์œผ๋กœ ์ธํ•ด ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ์‹คํ–‰์˜ ์ตœ์ ํ™”์— ์žˆ์–ด ์ œ์•ฝ์‚ฌํ•ญ์ด ์žˆ๋‹ค. ์ฆ‰, CPU์˜ ์—ฐ์‚ฐ ๋ณด์กฐ์žฅ์น˜๋กœ์จ์˜ GPU ์„ค๊ณ„๋กœ ์ธํ•ด ๋‚ด์žฌ์ ์ธ ํ•œ๊ณ„์„ฑ์ด ์žˆ๋‹ค. ๊ทธ์— ๋น„ํ•ด AI ํ•˜๋“œ์›จ์–ด๋Š” ์„ค๊ณ„๋‹จ๊ณ„์—์„œ๋ถ€ํ„ฐ ํŒŒ์ดํ”„๋ผ์ด๋‹์„ ๋งค์šฐ ํšจ๊ณผ์ ์œผ๋กœ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํŠน์ • ์ž‘์—…์— ๋งž์ถฐ ์ตœ์ ํ™”๋œ ๊ณ ์ •๋œ ํšŒ๋กœ์—์„œ ๊ฐ ์—ฐ์‚ฐ ๋‹จ๊ณ„๋ฅผ ๋™์‹œ์— ๋ณ‘๋ ฌ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ๋ฐ์ดํ„ฐ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ฒ˜๋ฆฌํ•ด์•ผ ํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ถ”๋ก  ์—ฐ์‚ฐ์—์„œ ํ•˜๋“œ์›จ์–ด ๊ฐ€์†๊ธฐ์˜ ์‚ฌ์šฉ์€ ๋งค์šฐ ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด AI ํ•˜๋“œ์›จ์–ด์— ์ถ”๊ฐ€ ๊ธฐ์—ฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ž„์˜์˜ ํŒจ๋”ฉ (padding)๊ณผ ์ŠคํŠธ๋ผ์ด๋”ฉ (striding) ์„ค์ •์— ๋Œ€ํ•ด์„œ๋„ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์„ ๊ฐ€์†ํ•  ์ˆ˜ ์žˆ๋Š” AI ํ•˜๋“œ์›จ์–ด๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋ฉ”๋ชจ๋ฆฌ ์ž…์ถœ๋ ฅ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์„ธ๋ถ€์ ์œผ๋กœ ์„ค๊ณ„ํ•˜์—ฌ ์ž„์˜์˜ ํŒจ๋”ฉ ๋ฐ ์ŠคํŠธ๋ผ์ด๋”ฉ ์„ค์ •์—์„œ๋„ ์œ ์—ฐํ•˜๊ณ  ํšจ์œจ์ ์œผ๋กœ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๋˜ํ•œ, ์ด๋Ÿฌํ•œ ์ผ๋ฐ˜ํ™” ๊ณผ์ •์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜ํ•™์  ํ‘œ๊ธฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„ ๋ฐฉ์‹์„ ๋ช…ํ™•ํ•˜๊ฒŒ ์ œ์‹œํ•œ๋‹ค.

์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ์ฝ˜๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ ์„ค๊ณ„๋ฅผ ํ•˜๋“œ์›จ์–ด ์–ธ์–ด์ธ Verilog HDL์„ ์‚ฌ์šฉํ•˜์—ฌ ํ•˜๋“œ์›จ์–ด๋กœ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ ์ด๋ฅผ ์†Œํ”„ํŠธ์›จ์–ด๋กœ ๊ตฌํ˜„๋œ ๋„คํŠธ์›Œํฌ์™€ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๊ณ  ๋ถ„์„ ๋ฐ ๊ฒ€์ฆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ํ•˜๋“œ์›จ์–ด๋Š” ์ •์ˆ˜ํ˜• ๊ฐ’์„ ์ฒ˜๋ฆฌํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ์†Œํ”„ํŠธ์›จ์–ด๋กœ ํ•™์Šต๋œ ๋„คํŠธ์›Œํฌ์˜ ๊ฐ€์ค‘์น˜ ๊ฐ’ ์—ญ์‹œ ์ •์ˆ˜ํ˜•์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ ๊ธฐ์กด ์–‘์žํ™” ๊ธฐ๋ฒ•๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ๋ถ€๋™์†Œ์ˆ˜์  ํ‘œํ˜„์˜ ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ์ •์ˆ˜ํ˜• ํ‘œํ˜„์˜ ๊ฐ€์ค‘์น˜ ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ํ•˜๋“œ์›จ์–ด ๊ฒ€์ฆ์„ ์œ„ํ•ด ์‚ฌ์šฉํ•  ์–‘์žํ™”๋œ ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ๋„์ถœํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ฐ์ดํ„ฐ์…‹์ธ MNIST ์™€ Fashion MNIST๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ํ•ด๋‹น ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ๋ถ€ํ„ฐ ์–ป์€ ์–‘์žํ™”๋œ ๊ฐ€์ค‘์น˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ RTL ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ํ•˜๋“œ์›จ์–ด ์ถ”๋ก  ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•œ๋‹ค. RTL ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๋„์ถœํ•œ ํ•˜๋“œ์›จ์–ด ๊ฒฐ๊ณผ๋ฅผ ์†Œํ”„ํŠธ์›จ์–ด์— ์˜ํ•œ ์ถ”๋ก  ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•จ์œผ๋กœ์จ ์ตœ์ข…์ ์œผ๋กœ ์„ค๊ณ„๋œ ํ•˜๋“œ์›จ์–ด๋ฅผ ๊ฒ€์ฆํ•œ๋‹ค.

2. ์ฝ˜๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ๋ฐ ์–‘์žํ™” ๊ธฐ๋ฒ•

๋ณธ ์žฅ์—์„œ๋Š” ํ•˜๋“œ์›จ์–ด๋กœ ์„ค๊ณ„ ๋ฐ ์†Œํ”„ํŠธ์›จ์–ด๋กœ ํ•™์Šตํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ (Deep Neural Network, DNN)์˜ ๊ตฌ์กฐ์— ๊ด€ํ•ด์„œ ์„ค๋ช…ํ•œ๋‹ค. ๋˜ํ•œ, ํ•™์Šต๋œ ๊ฐ€์ค‘์น˜๋ฅผ ์–‘์žํ™”ํ•˜๋Š” ๊ธฐ๋ฒ•์„ ์„ค๋ช…ํ•˜๊ณ  ํ•ด๋‹น ์–‘์žํ™” ๊ธฐ๋ฒ• ์ ์šฉ์— ๋”ฐ๋ฅธ ๋ชจ๋ธ์˜ ์ •ํ™•๋„ ๋ณ€ํ™”์— ๊ด€ํ•ด์„œ ์„ค๋ช…ํ•œ๋‹ค.

2.1 ์ฝ˜๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ์„ค๋ช…

๊ทธ๋ฆผ 1์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋“ฏ์ด ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํ•ฉ์„ฑ๊ณฑ ์ธต (Convolutional layer)๊ณผ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์™„์ „ ์—ฐ๊ฒฐ ์ธต (Fully connected layer)์„ ์ˆœ์ฐจ์ ์œผ๋กœ ์ ์ธตํ•˜์—ฌ ๊ตฌ์„ฑํ•œ๋‹ค. ํ‘œ 1์€ ๋‘ ๊ฐœ์˜ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ฐ์ดํ„ฐ์…‹๋ณ„ ์ƒ์„ธํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ํ•ด๋‹น ํ‘œ์—์„œ conv3-5์˜ ์˜๋ฏธ๋Š” ํ•ด๋‹น ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์—์„œ ์‚ฌ์šฉํ•˜๋Š” ์ปค๋„์˜ ๋†’์ด์™€ ๋„ˆ๋น„๊ฐ€ 3์ด๊ณ  ์ปค๋„์˜ ์ด ๊ฐœ์ˆ˜๊ฐ€ 5์ž„์„ ์˜๋ฏธํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  fc-10์€ ํ•ด๋‹น ์™„์ „ ์—ฐ๊ฒฐ ์ธต์˜ ์ถœ๋ ฅ ํŠน์ง•๊ฐ’์˜ ์ˆ˜๊ฐ€ 10์ž„์„ ์˜๋ฏธํ•œ๋‹ค.

๊ฐ ๋ฐ์ดํ„ฐ์…‹๋ณ„๋กœ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต๊ณผ ์™„์ „ ์—ฐ๊ฒฐ ์ธต์˜ ์ˆ˜๋Š” ๋™์ผํ•˜๋‚˜ ์„ธ๋ถ€์ ์ธ ๋ณ€์ˆ˜์˜ ๊ฐ’์€ ์ƒ์ดํ•˜๋‹ค. Fashion MNIST๋ฅผ ์œ„ํ•œ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๊ฐ€์ค‘์น˜์˜ ์ˆ˜๊ฐ€ ๋” ๋งŽ๋„๋ก ์„ค์ •์ด ๋˜์–ด ์žˆ๋‹ค. ์ด๋Š” ํ•ด๋‹น ๋ฐ์ดํ„ฐ์…‹์ด MNIST ๋ฐ์ดํ„ฐ์…‹์— ๋น„ํ•ด ์ด๋ฏธ์ง€์˜ ๋ณต์žก์„ฑ์ด ๋” ๋†’๊ธฐ์— ๋„คํŠธ์›Œํฌ์˜ ํ‘œํ˜„๋ ฅ์ด ๋” ๋†’์•„์ ธ์•ผ ๋ถ„๋ฅ˜์˜ ์„ฑ๋Šฅ์ด ๋†’์•„์งˆ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ฌ์šฉํ•  ์ฝ˜๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ๊ฐ€๋Šฅํ•œ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ๊ฐ€์ค‘์น˜์˜ ์ˆ˜๋ฅผ ์ค„์ด๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์ด ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ๋„์ถœํ•œ ์ด์œ ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๊ตฌ๋™์‹œํ‚ค๋Š” ํ•˜๋“œ์›จ์–ด์˜ ํ™˜๊ฒฝ์ด ์ œ์•ฝ์ ์ธ ๊ฒฝ์šฐ๋กœ ๊ณ ๋ คํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ œ์•ฝ์  ํ™˜๊ฒฝ์—์„œ๋Š” ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋ฅผ ์ž‘๊ฒŒ ์„ค๊ณ„ํ•˜์—ฌ ๊ฐ€์ค‘์น˜์˜ ์ˆ˜๋ฅผ ์ตœ์†Œํ™”ํ•จ์œผ๋กœ์จ ํ•˜๋“œ์›จ์–ด ์ž์› ํ™œ์šฉ์˜ ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๋”๋ถˆ์–ด, ๋ชจ๋ธ์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘์„์ˆ˜๋ก RTL ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒ€์ฆ์˜ ์‹œ๊ฐ„ ์—ญ์‹œ ์ค„์–ด๋“ค๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ์„ค์ • ๋ฐฉ์‹์€ ์—ฐ๊ตฌ์  ์ธก๋ฉด์—์„œ๋„ ํƒ€๋‹นํ•˜๋‹ค ํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 1. ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ์ฝ˜๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ.

Fig. 1. Structure of a convolution neural network for image classification.

../../Resources/kiee/KIEE.2025.74.4.644/fig1.png

ํ‘œ 1 ๋ฐ์ดํ„ฐ์…‹๋ณ„ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ.

Table 1 Structure of DNNs for each Dataset.

For MNIST

For Fashion MNIST

Input

(28ร—28ร—1)

Convolution Block

conv3-5

conv3-30

conv3-10

conv3-60

conv3-20

conv3-100

conv3-10

conv3-60

conv3-5

conv3-20

Flatten

Fully connected

Block

fc-180

fc-720

fc-90

fc-180

fc-40

fc-60

fc-10

fc-10

Output

softmax

2.2 ์–‘์žํ™” (Quantization)

๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ๋ฅผ ํ•˜๋“œ์›จ์–ด์—์„œ ์ถ”๋ก ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์†Œํ”„ํŠธ์›จ์–ด์—์„œ ํ•™์Šตํ•œ ๋ถ€๋™์†Œ์ˆ˜์  ๊ฐ€์ค‘์น˜๋ฅผ ์ •์ˆ˜ ๊ฐ€์ค‘์น˜๋กœ ๋ณ€ํ™˜ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ถ€๋™์†Œ์ˆ˜์  ์—ฐ์‚ฐ์€ ๋ณต์žกํ•œ ์ˆ˜์˜ ํ‘œํ˜„์„ ์ฒ˜๋ฆฌํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์ด๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ํ•˜๋“œ์›จ์–ด ์ž์›์ด ์š”๊ตฌ๋˜์ง€๋งŒ, ์ •์ˆ˜ํ˜• ์—ฐ์‚ฐ์€ ๊ณ ์ •๋œ ๋น„ํŠธ ์ˆ˜๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์–ด ํšŒ๋กœ ์„ค๊ณ„๊ฐ€ ๊ฐ„๋‹จํ•˜๊ณ  ์—ฐ์‚ฐ ์†๋„๊ฐ€ ๋น ๋ฅด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

๊ฐ„๋‹จํžˆ ๋ถ€๋™์†Œ์ˆ˜์ ์„ ์ •์ˆ˜ํ˜•์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ์–‘์žํ™” ๊ธฐ๋ฒ•์œผ๋กœ ํ•™์Šต ํ›„ ์–‘์žํ™” (Post-Training Quantization)๊ฐ€ ์žˆ๋‹ค. ์–‘์žํ™”์—์„œ ์ •์ˆ˜ํ˜•์œผ๋กœ ๋ณ€ํ™˜์€ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋  ์ˆ˜ ์žˆ๊ธฐ์— ์–‘์žํ™” ๊ธฐ๋ฒ•์€ ๊ฐ€์ค‘์น˜๋ฅผ ์ •์ˆ˜ํ˜•์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋˜ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์ตœ๋Œ€ํ•œ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•˜๋‹ค. ์ด๋ฅผ ๊ณ ๋ คํ•œ ๊ธฐ๋ฒ•์ด ์–‘์ž ์ธ์ง€ ํ•™์Šต (Quantization-Aware Training)์ด๋‹ค.

ํ•™์Šต ํ›„ ์–‘์žํ™” ๊ธฐ๋ฒ• (PTQ)์€ ํ•™์Šต์ด ์™„๋ฃŒ๋œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ์˜ ๋ถ€๋™์†Œ์ˆ˜์  ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ์ฃผ์–ด์ง„ ๊ณ ์ •๋œ ๋ฒ”์œ„์˜ ์ •์ˆ˜ํ˜•์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ด๋Š” ์ถ”๊ฐ€์ ์ธ ํ•™์Šต ๊ณผ์ •์ด ํ•„์š”ํ•˜์ง€ ์•Š๋‹ค. ํ•˜์ง€๋งŒ ๋ถ€๋™์†Œ์ˆ˜์  ๊ฐ’์„ ์ •์ˆ˜๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณผ์ •์—์„œ ๊ฐ’์˜ ์ •๋ฐ€๋„๊ฐ€ ์†์‹ค๋˜๋ฉฐ ์ด๋Š” ๋„คํŠธ์›Œํฌ์˜ ์ถ”๋ก  ์ •ํ™•๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค.

์–‘์ž ์ธ์ง€ ํ•™์Šต (QAT)์€ ์–‘์žํ™”๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ๋ฅผ ์ถ”๊ฐ€ ํ•™์Šตํ•˜๋Š” ๊ธฐ๋ฒ•์ด๋‹ค. ๋„คํŠธ์›Œํฌ์˜ ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ํ•™์Šต ์ค‘์— ์–‘์žํ™”ํ•˜๋ฉฐ ํ•ด๋‹น ์ •์ˆ˜ํ˜• ๊ฐ€์ค‘์น˜๋กœ ์ˆœ์ „ํŒŒํ•˜์—ฌ ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค. ํ•ด๋‹น ๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•˜์—ฌ ์˜ค๋ฅ˜ ์—ญ์ „ํŒŒ (Backpropagation)๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ๋„คํŠธ์›Œํฌ๋ฅผ ์ตœ์ ํ™”ํ•œ๋‹ค. ์ด ๋ฐฉ์‹์€ ์–‘์žํ™”์— ๋”ฐ๋ฅธ ์†์‹ค๋„ ํ•™์Šต ์ค‘์— ๊ณ ๋ ค๋˜๊ธฐ ๋•Œ๋ฌธ์— ์•ž์„  PTQ ๋ฐฉ์‹์— ๋น„ํ•ด ๋” ๋†’์€ ์ •ํ™•๋„์™€ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‘ ์–‘์žํ™” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์„ ์†Œํ”„ํŠธ์›จ์–ด์ ์œผ๋กœ ๋น„๊ตํ•˜๊ณ  ๊ฐ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์–ป์€ ์–‘์žํ™” ๊ฐ€์ค‘์น˜๋ฅผ ์„ค๊ณ„ํ•œ ํ•˜๋“œ์›จ์–ด ๊ฒ€์ฆ์— ํ™œ์šฉํ•œ๋‹ค.

2.3 ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ํ•™์Šต ๋ณ€์ˆ˜ ์„ค์ • ๋ฐ ๊ฒฐ๊ณผ

ํ‘œ 1์˜ ๋„คํŠธ์›Œํฌ๋ฅผ ํ•™์Šต์‹œํ‚ค๊ธฐ ์œ„ํ•ด epoch๋Š” 25 ์ตœ์ ํ™” ๊ธฐ๋ฒ• (optimizer)์€ Adam, ํ•™์Šต๋ฅ ์€ 10โˆ’4, ๊ฐ€์ค‘์น˜ ๊ฐ์‡„ (weight decay)๋Š” 5ร—10โˆ’4๋กœ ์„ค์ •ํ•œ๋‹ค. ํ•™์Šต๋ฅ  ์ œ์–ด (scheduler)๋Š” cycliclr, ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋Š” ReLU๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.

ํ‘œ 2๋Š” ๊ฐ ๋ฐ์ดํ„ฐ์…‹๊ณผ ์–‘์žํ™” ๊ธฐ๋ฒ•์— ๋Œ€ํ•œ ์ถ”๋ก  ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํ‘œ์—์„œ N/A๋Š” ๋ถ€๋™์†Œ์ˆ˜์  ๊ฐ€์ค‘์น˜์— ์˜ํ•œ ์ถ”๋ก  ์ •ํ™•๋„๋กœ ์–‘์žํ™” ๊ธฐ๋ฒ•์„ ์ ์šฉํ–ˆ์„ ๋•Œ์˜ ์ •ํ™•๋„๋ณด๋‹ค ๋†’์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. MNIST ๋ฐ์ดํ„ฐ์…‹์˜ ๊ฒฝ์šฐ QAT๊ฐ€ PTQ๋ณด๋‹ค ๋†’์€ ์–‘์žํ™” ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ Fashion MNIST ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด์„œ๋Š” ๊ฑฐ์˜ ๋™์ผํ•œ ์„ฑ๋Šฅ์ด ๋ณด์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

ํ‘œ 2 PTQ์™€ QAT ์ ์šฉ์— ๋”ฐ๋ฅธ ์ถ”๋ก  ์„ฑ๋Šฅ.

Table 2 Inference accuracy of networks quantized by PTQ and QAT.

Quantization

Accuracy (%)

MNIST

Fashion MNIST

N/A

96.73

91.1

PTQ

95.46

90.98

QAT

96.13

90.82

3. ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„

๋ณธ ์žฅ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ์˜ ํ•ฉ์„ฑ๊ณฑ ์ธต๊ณผ ์™„์ „ ์—ฐ๊ฒฐ ์ธต์„ ํ•˜๋“œ์›จ์–ด๋กœ ์„ค๊ณ„ํ•˜๋Š” ๊ณผ์ •์„ ์ƒ์„ธํžˆ ์„ค๋ช…ํ•œ๋‹ค.

3.1 ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต (ํ•ฉ์„ฑ๊ณฑ ์ธต)์˜ ์•„ํ‚คํ…์ณ

๊ทธ๋ฆผ 2๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ์˜ ์ฝ˜๋ณผ๋ฃจ์…˜ ๋ธ”๋ก์„ ๊ตฌ์„ฑํ•˜๋Š” c๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ์•„ํ‚คํ…์ฒ˜์ด๋ฉฐ, ์„ค๋ช…์„ ์œ„ํ•œ ๋ณ€์ˆ˜๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜ํ•œ๋‹ค. ์ž…๋ ฅ ํŠน์ง• ๋งต, I(Feat ,c)โˆˆR(WIร—HIร—GI) (ํ˜น์€ ์ด์ „ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ์ถœ๋ ฅ ํŠน์ง• ๋งต, O(Feat ,cโˆ’1))์„ ๋ฐ›์•„ ๊ฐ€์ค‘์น˜์™€ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•œ ํ›„ ํ•ด๋‹น ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ์ถœ๋ ฅ ํŠน์ง• ๋งต, O(Feat ,c)โˆˆR(WOร—HOร—GO)์„ ์ƒ์„ฑํ•œ๋‹ค. ์ด๋•Œ, ์ž…๋ ฅ ํŠน์ง• ๋งต์˜ ๋„ˆ๋น„๋Š” WI, ๋†’์ด๋Š” HI, ์ฑ„๋„ ์ˆ˜๋Š” CI์ด๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์— ์‚ฌ์šฉ๋œ ์ปค๋„์˜ ๋„ˆ๋น„, ๋†’์ด, ๊ทธ๋ฆฌ๊ณ  ์ฑ„๋„ ์ˆ˜๋Š” WK, HK, ๊ทธ๋ฆฌ๊ณ  CK๋กœ ์ •์˜๋œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ถœ๋ ฅ ํŠน์ง• ๋งต, O(Feat,c)์˜ ๋„ˆ๋น„, ๋†’์ด, ๊ทธ๋ฆฌ๊ณ  ์ฑ„๋„ ์ˆ˜๋Š” ๊ฐ๊ฐ WO, HO, ๊ทธ๋ฆฌ๊ณ  CO์ด๋‹ค.

๊ทธ๋ฆผ 2์˜ ํ•ฉ์„ฑ๊ณฑ ์ธต์€ ์ŠคํŠธ๋ผ์ด๋“œ-ํŒจ๋”ฉ ๋ชจ๋“ˆใ€€(Stride-Padding, SP module), ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต ๋ชจ๋“ˆ (Convolution Layer module), ๊ทธ๋ฆฌ๊ณ  ๊ฐ€์ค‘์น˜ ๋ฐ ์ž…๋ ฅ/์ถœ๋ ฅ ํŠน์ง• ๋งต์„ ์ €์žฅํ•˜๊ฑฐ๋‚˜ ์ฝ์„ ์ˆ˜ ์žˆ๋Š” ๋ฉ”๋ชจ๋ฆฌ (Memory)๋กœ ๊ตฌ์„ฑ๋œ๋‹ค.

์ŠคํŠธ๋ผ์ด๋“œ-ํŒจ๋”ฉ (SP) ๋ชจ๋“ˆ์€ FW (Feature Write) ๋ชจ๋“ˆ๊ณผ FR(Feature Read) ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ์ด ๋œ๋‹ค. c๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ FW ๋ชจ๋“ˆ์€ ์ž…๋ ฅ ํŠน์ง• ๋งต์„ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•˜๊ธฐ ์œ„ํ•œ ์ฃผ์†Œ, A(FW,c)๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , c๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ FR ๋ชจ๋“ˆ์€ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅ๋œ ์ž…๋ ฅ ํŠน์ง• ๋งต์„ ์ฝ์–ด์˜ค๊ธฐ ์œ„ํ•œ ์ฃผ์†Œ, A(FR,c)๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค.

๊ทธ๋ฆผ 2์˜ c๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ SP ๋ชจ๋“ˆ์—์„œ๋Š” ๋ฉ”๋ชจ๋ฆฌ๋กœ์˜ ์“ฐ๊ธฐ์™€ ๋ฉ”๋ชจ๋ฆฌ๋กœ๋ถ€ํ„ฐ ์ฝ๊ธฐ ๋‘ ๊ฐ€์ง€ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋จผ์ € ์“ฐ๊ธฐ ๋™์ž‘์˜ ๊ฒฝ์šฐ ์ด์ „ (cโˆ’1)๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์—์„œ์˜ ๊ฒฐ๊ณผ๋ฅผ c๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ๋ฉ”๋ชจ๋ฆฌ, M(I,c)์— ์ €์žฅํ•œ๋‹ค. ์ฝ๊ธฐ ๋™์ž‘์˜ ๊ฒฝ์šฐ M(I,c)๋กœ๋ถ€ํ„ฐ ๊ฐ’๋“ค์„ ์ฝ์–ด c๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ํ•ฉ์„ฑ ์—ฐ์‚ฐ์„ ์œ„ํ•œ ์ˆ˜์šฉ์˜์—ญ (receptive field)๋ฅผ ๊ตฌ์„ฑํ•œ๋‹ค.

์ด์ „ (cโˆ’1)๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์—์„œ ํ•˜๋‚˜์˜ ์ˆ˜์šฉ์˜์—ญ๊ณผ ์ปค๋„๋“ค์˜ ํ•ฉ์„ฑ๊ณฑ ๊ฒฐ๊ณผ์ธ ์ถœ๋ ฅ ํŠน์ง• ๋งต ๋ฒกํ„ฐ, O(Feat,cโˆ’1)โˆˆR(CI)๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„ ๋‹ค์Œ c๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ๋ฉ”๋ชจ๋ฆฌ, M(I,c)์— ์ €์žฅํ•œ๋‹ค. ๋ฒกํ„ฐ O(Feat,cโˆ’1)์˜ CI๊ฐœ์˜ ์š”์†Ÿ๊ฐ’์€ M(I,c)์˜ A(FW,c)๋ฒˆ์งธ ์ฃผ์†Œ๋ฅผ ์‹œ์ž‘์œผ๋กœ ์ˆœ์ฐจ์ ์œผ๋กœ ์ €์žฅ์ด ๋œ๋‹ค.

๋ชจ๋“  ์ถœ๋ ฅ ํŠน์ง• ๋งต ๋ฒกํ„ฐ๊ฐ€ M(I,c)์— ์ €์žฅ๋˜๋ฉด c๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ํ•ฉ์„ฑ ์—ฐ์‚ฐ์„ ์œ„ํ•œ ์ˆ˜์šฉ์˜์—ญ์„ ์ƒ์„ฑํ•œ๋‹ค. ์ˆ˜์šฉ์˜์—ญ์€ SP ๋ชจ๋“ˆ์˜ FR ๋ชจ๋“ˆ์—์„œ ๊ฒฐ์ •๋œ A(FR,c)์ฃผ์†Œ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ƒ์„ฑ๋œ๋‹ค. ์ฝ์–ด์˜จ ๊ฐ’์ธ M(I,c)(A(FR,c))์„ ๋ ˆ์ง€์Šคํ„ฐ ๋ฒ„ํผ์— ์ˆœ์ฐจ์ ์œผ๋กœ ์ €์žฅํ•จ์œผ๋กœ์จ ํ•˜๋‚˜์˜ ์ˆ˜์šฉ์˜์—ญ, DrecโˆˆR(WKร—HKร—CK)์„ ์ƒ์„ฑํ•œ๋‹ค.

๋ฉ”๋ชจ๋ฆฌ M(I,c)์— ๋Œ€ํ•ด ๊ฐ’์„ ์ฝ๊ณ  ์“ฐ๋Š” ๋™์ž‘์ด ํ•˜๋‚˜์˜ ํฌํŠธ (port)๋ฅผ ํ†ตํ•ด์„œ ์‹คํ–‰๋˜์–ด์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ํ•˜๋‚˜์˜ MUX (Multiplexer)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ•ด๋‹น MUX์˜ ์ž…๋ ฅ์œผ๋กœ๋Š” A(FW,c)์™€ A(FR,c)์ด ์žˆ์œผ๋ฉฐ ์ œ์–ด ์‹ ํ˜ธ๋ฅผ ํ†ตํ•ด ๋ฉ”๋ชจ๋ฆฌ์— ์ ‘๊ทผํ•  ์ตœ์ข… ์ฃผ์†Œ A(Feat,c)๊ฐ€ ๊ฒฐ์ •๋œ๋‹ค.

์ฝ˜๋ณผ๋ฃจ์…˜ ๋ธ”๋ก์˜ c๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ๊ฐ€์ค‘์น˜ ๋ฐ ๋ฐ”์ด์–ด์Šค ๋ฉ”๋ชจ๋ฆฌ๋Š” M(W,c)์™€ M(B,c)์ด๋‹ค. ๊ฐ ๋ฉ”๋ชจ๋ฆฌ๋กœ๋ถ€ํ„ฐ ๊ฐ’์„ ์ฝ์–ด์˜ค๊ธฐ ์œ„ํ•œ ์ฃผ์†Œ๋ฅผ ๊ฐ๊ฐ A(W,c)โˆˆ[0,LWโˆ’1], A(B,c)โˆˆ[0,LBโˆ’1]๋กœ ์ •์˜ํ•œ๋‹ค. ๋ณ€์ˆ˜ LW์™€ LB๋Š” ๋ฉ”๋ชจ๋ฆฌ M(W,c)์™€ M(B,c)์˜ ๊นŠ์ด (depth)๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ๊ฐ ๋ฉ”๋ชจ๋ฆฌ๋กœ๋ถ€ํ„ฐ ๊ฐ€์ค‘์น˜ ๊ฐ’, M(W,c)(A(W,c))์™€ ํŽธํ–ฅ ๊ฐ’, M(B,c)(A(B,c))๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ์ฝ์–ด ๋ ˆ์ง€์Šคํ„ฐ ๋ฒ„ํผ์— ์ €์žฅํ•จ์œผ๋กœ์จ ๊ฐ€์ค‘์น˜ ๊ฐ’ ๋ฒกํ„ฐ, DWโˆˆR(LW)์™€ ํŽธํ–ฅ ๊ฐ’ ๋ฒกํ„ฐ, DBโˆˆR(LB)๋ฅผ ์ƒ์„ฑํ•œ๋‹ค.

์ตœ์ข…์ ์œผ๋กœ, SP ๋ชจ๋“ˆ์€ ํ•˜๋‚˜์˜ ์ˆ˜์šฉ์˜์—ญ (Drec), ๊ฐ€์ค‘์น˜ ๊ฐ’ ๋ฒกํ„ฐ (DW), ํŽธํ–ฅ ๊ฐ’ ๋ฒกํ„ฐ (DB)๋ฅผ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต ๋ชจ๋“ˆ๋กœ ์ „๋‹ฌํ•˜์—ฌ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์„ ์‹คํ–‰ํ•˜๋ฉฐ, ๊ฐ ๋ฒกํ„ฐ๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ์ˆ˜์‹ (1), (2), (3)์œผ๋กœ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค.

(1)
Drec=[M(I,c)(i)]A(Feat,c)โ‰คiโ‰คA(Feat,c)+WKร—HKร—CKโˆ’1,
(2)
DW=[M(W,c)(A(W,c))]0โ‰คA(W,c)โ‰คLWโˆ’1,
(3)
DB=[M(B,c)(A(B,c))]0โ‰คA(B,c)โ‰คLBโˆ’1.

์ˆ˜์‹ (1)์€ ๋ฉ”๋ชจ๋ฆฌ M(I,c)์—์„œ ํ•˜๋‚˜์˜ ์ˆ˜์šฉ์˜์—ญ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์ฃผ์†Œ, iโˆˆ[A(Feat,c),(A(Feat,c)+WKร—HKร—CKโˆ’1)]์— ๋Œ€์‘ํ•˜๋Š” ๊ฐ’๋“ค์˜ ์ง‘ํ•ฉ์„ ๋ฒกํ„ฐ๋กœ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์ˆ˜์‹ (2)์™€ (3)์€ ๋ฉ”๋ชจ๋ฆฌ M(W,c)์™€ M(B,c)์—์„œ ์ฃผ์†Œ A(W,c)์™€ A(B,c)์— ๋Œ€์‘ํ•˜๋Š” ๊ฐ’๋“ค์˜ ์ง‘ํ•ฉ์„ ๋ฒกํ„ฐ๋กœ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค.

๊ทธ๋ฆผ 2. ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ํ•˜๋“œ์›จ์–ด ์•„ํ‚คํ…์ฒ˜.

Fig. 2. Hardware architecture of a convolution layer.

../../Resources/kiee/KIEE.2025.74.4.644/fig2.png

3.2 ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต ๋ชจ๋“ˆ (Convolutional Layer)

ํ•ด๋‹น ๋ชจ๋“ˆ์—์„œ๋Š” c๋ฒˆ์งธ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์—์„œ์˜ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์—์„œ์˜ MAC ์—ฐ์‚ฐ์€ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด (CNN core) ๋ชจ๋“ˆ์—์„œ ์ˆ˜ํ–‰๋˜๋ฉฐ ์œ ํ•œ ์ƒํƒœ ๋จธ์‹ ์œผ๋กœ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ๋ชจ๋“ˆ์„ ์ œ์–ดํ•˜์—ฌ ์ตœ์ข… ์ถœ๋ ฅ ํŠน์ง• ๋งต ๋ฒกํ„ฐ, O(Feat,c)โˆˆR(CO)๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์œ ํ•œ ์ƒํƒœ ๋จธ์‹ ์€ ์ „๋‹ฌ๋ฐ›์€ Drec, DW, DB ๋ฒกํ„ฐ๋“ค์„ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ๋ชจ๋“ˆ์˜ ์—ฌ๋Ÿฌ MAC ์—ฐ์‚ฐ ์ฝ”์–ด๋“ค๋กœ ์ „๋‹ฌํ•œ๋‹ค. ์ „๋‹ฌ๋ฐ›์€ ์ˆ˜์šฉ์˜์—ญ, Drec์— ๋Œ€ํ•œ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์ด ์™„๋ฃŒ๋˜์–ด O(Feat,c) ๋ฒกํ„ฐ๊ฐ€ ์ƒ์„ฑ๋˜๋ฉด ๋‹ค์Œ (c+1)๋ฒˆ์งธ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ์ž…๋ ฅ์œผ๋กœ ์ „๋‹ฌํ•œ๋‹ค.

3.2.1 ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ๋ชจ๋“ˆ (CNN core)

ํ•ด๋‹น ๋ชจ๋“ˆ์—์„œ๋Š” Drec, DW, DB ๋ฒกํ„ฐ๋“ค์˜ ์š”์†Ÿ๊ฐ’๋“ค์„ MAC ์—ฐ์‚ฐ์ฝ”์–ด๋“ค๋กœ ๋ถ„์‚ฐ์‹œ์ผœ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์„ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ทธ๋ฆผ 3์€ ํ•ด๋‹น ๋ชจ๋“ˆ์—์„œ ์ˆ˜ํ–‰๋˜๋Š” ์—ฐ์‚ฐ ๊ณผ์ •์„ ๋‹จ๊ณ„๋ณ„๋กœ ๋ณด์—ฌ์ค€๋‹ค. ์ด ์—ฐ์‚ฐ์€ ์ด 4๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๋‹จ๊ณ„ 1์—์„œ๋Š” Drec, DW๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜๊ณ , ๋‹จ๊ณ„ 4์—์„œ๋Š” DB๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜์–ด ์ตœ์ข…์ ์œผ๋กœ ์ถœ๋ ฅ ํŠน์ง• ๋งต ๋ฒกํ„ฐ O(Feat,c)๋ฅผ ์ƒ์„ฑํ•œ๋‹ค.

ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์œผ๋กœ ๊ณ„์‚ฐ๋˜๋Š” O(Feat,c) ๋ฒกํ„ฐ์˜ iโˆˆ[0,COโˆ’1]๋ฒˆ์งธ ์š”์†Œ์ธ [O(Feat,c)](i)์˜ ์ˆ˜์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ˆ˜์‹ (4)๋Š” ๊ทธ๋ฆผ 3์—์„œ ๋‹จ๊ณ„ 1 (stage 1)์—์„œ ๋‹จ๊ณ„ 4 (stage 4)๊นŒ์ง€์˜ ๊ณผ์ •์„ ์˜๋ฏธํ•˜๋ฉฐ [O(Feat,c)](i)๋Š” ๋‹จ๊ณ„ 4์—์„œ ์ฃผํ™ฉ์ƒ‰ ๋ฒกํ„ฐ์˜ i๋ฒˆ์งธ ์š”์†Œ์— ๋ฐ”์ด์–ด์Šค๋ฅผ ๋”ํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. jโˆˆ[0,CIโˆ’1]๋Š” ์ž…๋ ฅ ์ฑ„๋„์˜ ์ธ๋ฑ์Šค๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, kโˆˆ[0,WKร—HKโˆ’1]๋Š” ์ปค๋„ ์š”์†Œ์˜ ์ธ๋ฑ์Šค๋ฅผ ์˜๋ฏธํ•œ๋‹ค.

(4)
[O(Feat,c)](i)=CIโˆ’1โˆ‘j=0WKร—HKโˆ’1โˆ‘k=0([Drec](WKร—HKร—CIร—i+WKร—HKร—j+k)ร—[DW](WKร—HKร—CIร—i+WKร—HKร—j+k))+[DB](i).

๋‹จ๊ณ„ 1 : ์ˆ˜์‹ (4)๋ฅผ ์ˆ˜์‹ (5)์™€ ๊ฐ™์ด ์žฌ์ž‘์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์—ฌ๊ธฐ์„œ [VS2](k|i,j)๋Š” ์ˆ˜์‹ (6)๊ณผ ๊ฐ™๋‹ค.

(5)
[O(Feat,c)](i)=โˆ‘CIโˆ’1j=0โˆ‘WKร—HKโˆ’1k=0[VS2](k|i,j)+[DB](i),
(6)
[VS2](k|i,j)=[Drec](WKร—HKร—CIร—i+WKร—HKร—j+k)ร—[DW](WKร—HKร—CIร—i+WKร—HKร—j+k).

์ˆ˜์‹ (6)์—์„œ i์™€ j ๊ฐ’์€ ์ฃผ์–ด์ง€๋Š” ๊ฐ’์ด๋ฉฐ VS2โˆˆR(WKร—HK) ๋ฒกํ„ฐ๋Š” ๊ทธ๋ฆผ 3์˜ ๋‹จ๊ณ„ 2์—์„œ์˜ ๋ฒกํ„ฐ๋ฅผ ์˜๋ฏธํ•˜๊ณ  ํ•ด๋‹น ๋ฒกํ„ฐ์˜ ๊ฐ ์š”์†Ÿ๊ฐ’์„ ์ˆ˜์‹ (6)์œผ๋กœ ๊ณ„์‚ฐํ•œ๋‹ค. ๋‹จ๊ณ„ 1์—์„œ ์ƒ์„ฑ๋˜๋Š” VS2 ๋ฒกํ„ฐ์˜ ์ด ์ˆ˜๋Š” COร—CI์ด๋‹ค.

๋‹จ๊ณ„ 2 : ์ˆ˜์‹ (5)๋ฅผ ์ˆ˜์‹ (7)๊ณผ ๊ฐ™์ด ์žฌ์ž‘์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์—ฌ๊ธฐ์„œ [VS3](j|i)์€ ์ˆ˜์‹ (8)๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

(7)
[O(Feat,c)](i)=โˆ‘CIโˆ’1j=0[VS3](j|i)+[DB](i),
(8)
[VS3](j|i)=โˆ‘WKร—HKโˆ’1k=0[VS2](k|i,j).

์ˆ˜์‹ (8)์—์„œ i๋Š” ์ฃผ์–ด์ง€๋Š” ๋ณ€์ˆ˜์ด๋ฉฐ, VS3โˆˆR(CI) ๋ฒกํ„ฐ๋Š” ๊ทธ๋ฆผ 3์˜ ๋‹จ๊ณ„ 3์—์„œ์˜ ๋ฒกํ„ฐ๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ ์ด CI๊ฐœ๊ฐ€ ์ƒ์„ฑ๋œ๋‹ค.

๋‹จ๊ณ„ 3 : ์ˆ˜์‹ (7)์€ ์ˆ˜์‹ (9)์™€ ๊ฐ™์ด ๋‹ค์‹œ ์ •์˜ํ•  ์ˆ˜ ์žˆ๊ณ , ์—ฌ๊ธฐ์„œ [VS4](i)์€ ์ˆ˜์‹ (10)๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

(9)
[O(Feat,c)](i)=[VS4](i)+[DB](i),
(10)
[VS4](i)=โˆ‘CIโˆ’1j=0[VS3](j|i).

์ˆ˜์‹ (10)์—์„œ i๋Š” ์ฃผ์–ด์ง€๋Š” ๋ณ€์ˆ˜์ด๋ฉฐ, VS4โˆˆR(CO)๋ฒกํ„ฐ๋Š” ๊ทธ๋ฆผ 3์˜ ๋‹จ๊ณ„ 4์—์„œ์˜ ๋ฒกํ„ฐ๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ ์ด 1๊ฐœ๊ฐ€ ์ƒ์„ฑ๋œ๋‹ค.

๋‹จ๊ณ„ 4 :ใ€€ ์ˆ˜์‹ (9)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹จ๊ณ„ 4์—์„œ๋Š” ์ตœ์ข… ์ถœ๋ ฅ ๋ฒกํ„ฐ์ธ O(Feat,c)์˜ i๋ฒˆ์งธ ์š”์†Œ์ธ [O(Feat,c)](i)๊ฐ€ ๊ณ„์‚ฐ๋œ๋‹ค. ์ด๋Š” ๋‹จ๊ณ„ 3์—์„œ ์ƒ์„ฑ๋˜๋Š”[VS4](i)์™€ ๋ฐ”์ด์–ด์Šค ๊ฐ’ [DB](i)์„ ๋”ํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. ์œ„ ์—ฐ์‚ฐ์„ CO๋ฒˆ ํ•˜์—ฌ ์ตœ์ข… O(Feat,c) ๋ฒกํ„ฐ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค.

๊ทธ๋ฆผ 3. ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ์—ฐ์‚ฐ์˜ ์ „์ฒด ๊ณผ์ •.

Fig. 3. Entire process of convolution core operations.

../../Resources/kiee/KIEE.2025.74.4.644/fig3.png

3.2.2 ํŒŒ์ดํ”„๋ผ์ธ (Pipeline)

์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ๋ชจ๋“ˆ์€ ์—ฐ์‚ฐ์„ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ํŒŒ์ดํ”„๋ผ์ด๋‹ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•œ ๊ตฌ์กฐ๋กœ ๋˜์–ด ์žˆ๋‹ค. ํŠนํžˆ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋™์ž‘ํ•ด์•ผ ํ•˜๋Š” ์‹œ์Šคํ…œ์—์„œ๋Š” ํŒŒ์ดํ”„๋ผ์ธ ๊ธฐ๋ฒ•์ด ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค.

๊ทธ๋ฆผ 4๋Š” ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ๋ชจ๋“ˆ ๋‚ด์—์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ์—ฐ์†์ ์œผ๋กœ ์ž…๋ ฅ๋  ๋•Œ, ๊ฐ ๋‹จ๊ณ„๋ณ„ ํŒŒ์ดํ”„๋ผ์ธ์ด ์–ด๋–ป๊ฒŒ ๋™์ž‘ํ•˜๋Š”์ง€๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ๋ชจ๋“ˆ์—์„œ ์ˆ˜์‹ (4)์˜ ์—ฐ์‚ฐ์„ ๋…๋ฆฝ์ ์œผ๋กœ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” 4๋‹จ๊ณ„์˜ ๊ตฌ์กฐ๋กœ ๋‚˜๋ˆ”์œผ๋กœ์จ ํŒŒ์ดํ”„๋ผ์ด๋‹์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ฆ‰, ์ˆ˜์‹ (4)์—์„œ ์ฃผ์–ด์ง„ ์ž…๋ ฅ๋งŒ์œผ๋กœ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ„๋ฆฌ ๊ฐ€๋Šฅํ•œ MAC ์—ฐ์‚ฐ ๋ฌถ์Œ์„ ๋ถ„๋ฆฌ ์„ค๊ณ„ํ•จ์œผ๋กœ์จ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, ํŒŒ์ดํ”„๋ผ์ด๋‹์„ ํ†ตํ•ด ์ˆ˜์‹ (4) ๊ณ„์‚ฐ์„ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค.

๊ทธ๋ฆผ 4. ํŒŒ์ดํ”„๋ผ์ธ ์—ฐ์‚ฐ ๊ณผ์ •.

Fig. 4. Pipeline operation process.

../../Resources/kiee/KIEE.2025.74.4.644/fig4.png

3.3 ์ŠคํŠธ๋ผ์ด๋“œ-ํŒจ๋”ฉ (SP) ๋ชจ๋“ˆ

๊ทธ๋ฆผ 2์˜ SP ๋ชจ๋“ˆ์€ 2๊ฐœ์˜ ํ•˜์œ„ ๋ชจ๋“ˆ์ธ FW ๋ชจ๋“ˆ๊ณผ FR ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. FW ๋ชจ๋“ˆ์€ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์˜ ํŒจ๋”ฉ์„ ๊ณ ๋ คํ•˜์—ฌ ํŠน์ง• ๋งต์„ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•œ๋‹ค. FR ๋ชจ๋“ˆ์—์„œ๋Š” ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์˜ ์ŠคํŠธ๋ผ์ด๋”ฉ์„ ๊ณ ๋ คํ•˜์—ฌ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์— ํ•„์š”ํ•œ ์ˆ˜์šฉ์˜์—ญ์„ ์ƒ์„ฑํ•œ๋‹ค. ๋˜ํ•œ, ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์— ํ•„์š”ํ•œ ๊ฐ€์ค‘์น˜์™€ ๋ฐ”์ด์–ด์Šค๋ฅผ ์ฝ์–ด ์ˆ˜์šฉ์˜์—ญ๊ณผ ํ•จ๊ป˜ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต ๋ชจ๋“ˆ๋กœ ์†ก์‹ ํ•œ๋‹ค.

์ž„์˜์˜ c๋ฒˆ์งธ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์˜ FW ๋ชจ๋“ˆ์€ (cโˆ’1)๋ฒˆ์งธ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์˜ ์ถœ๋ ฅ ํŠน์ง• ๋งต, boldO(Feat,cโˆ’1)์„ ํŒจ๋”ฉ ๋™์ž‘์„ ๊ณ ๋ คํ•˜์—ฌ ๋ฉ”๋ชจ๋ฆฌ M(I,c)์— ์ €์žฅํ•˜๊ณ , FR ๋ชจ๋“ˆ์€ M(I,c)์— ์ €์žฅ๋œ O(Feat,cโˆ’1)์˜ ์ผ๋ถ€๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ์ฝ์–ด์™€ ๋ ˆ์ง€์Šคํ„ฐ ๋ฒ„ํผ์— ์ €์žฅํ•˜์—ฌ ์ˆ˜์šฉ์˜์—ญ Drec๋ฅผ ์ƒ์„ฑํ•œ๋‹ค.

๋ฉ”๋ชจ๋ฆฌ M(I,c)๋กœ์˜ ์ฝ๊ธฐ/์“ฐ๊ธฐ ์ ‘๊ทผ์ด ๋™์‹œ์— ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด์„œ ์œ ํ•œ ์ƒํƒœ ๋จธ์‹ ์„ ์ด์šฉํ•˜์—ฌ SP ๋ชจ๋“ˆ์˜ ์ƒํƒœ๋ฅผ ์“ฐ๊ธฐ ์ƒํƒœ (Write state)์™€ ์ฝ๊ธฐ ์ƒํƒœ (Read state)๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ์ œ์–ดํ•œ๋‹ค. ์“ฐ๊ธฐ ์ƒํƒœ์ผ ๋•Œ๋Š” FW ๋ชจ๋“ˆ๋กœ O(Feat,cโˆ’1)์„ ์ €์žฅํ•˜๊ณ  ์ €์žฅ์ด ์™„๋ฃŒ๋˜๋ฉด ์ฝ๊ธฐ ์ƒํƒœ๋กœ ์ฒœ์ด ํ•œ๋‹ค. ์ฝ๊ธฐ ์ƒํƒœ์—์„œ๋Š” FR ๋ชจ๋“ˆ์„ ํ†ตํ•ด Drec์„ ์ฝ์–ด ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต ๋ชจ๋“ˆ๋กœ ์ „์†กํ•œ๋‹ค.

FW ๋ชจ๋“ˆ์ด O(Feat,cโˆ’1)๋ฅผ M(I,c)์— ์ €์žฅํ•  ๋•Œ ์‚ฌ์šฉํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ์ฃผ์†Œ A(FW,c)์™€ FR ๋ชจ๋“ˆ์ด Drec๋ฅผ ์ƒ์„ฑํ•  ๋•Œ ์‚ฌ์šฉํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ์ฃผ์†Œ A(FR,c)๋Š” ์„œ๋กœ ์ƒ์ดํ•˜๊ธฐ ๋•Œ๋ฌธ์— SP ๋ชจ๋“ˆ์˜ ์ƒํƒœ๋ณ„ ์‚ฌ์šฉ๋˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ์ฃผ์†Œ๋ฅผ ์ ์ ˆํžˆ ์„ ํƒํ•˜๊ธฐ ์œ„ํ•ด MUX (Multiplexer)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฉ”๋ชจ๋ฆฌ ์ ‘๊ทผ ์ฃผ์†Œ๋ฅผ ์ œ์–ดํ•œ๋‹ค.

3.3.1 FW (Feature Write) ๋ชจ๋“ˆ

FW ๋ชจ๋“ˆ์€ ๊ทธ๋ฆผ 2์—์„œ์™€ ๊ฐ™์ด ๋‘ ๊ฐœ์˜ ํ•˜์œ„ ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ ํ•˜๋‚˜๋Š” ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด์˜ค๋Š” ํŠน์ง• ๋งต ๋ฒกํ„ฐ์˜ ์ฑ„๋„ ์ˆ˜๋ฅผ ์นด์šดํŠธ ํ•˜๋Š” ์ฑ„๋„ ์นด์šดํ„ฐ (Channel Counter) ๋ชจ๋“ˆ์ด๊ณ  ๋‚˜๋จธ์ง€๋Š” ํ•ด๋‹น ๋ฒกํ„ฐ๋ฅผ ๋ฉ”๋ชจ๋ฆฌ ์ €์žฅํ•  ๋•Œ ํ•„์š”ํ•œ ์“ฐ๊ธฐ ์ฃผ์†Œ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ์ฃผ์†Œ ๊ณ„์‚ฐ๊ธฐ (A(FW,c) Calculator) ๋ชจ๋“ˆ์ด๋‹ค.

์ฑ„๋„ ์นด์šดํ„ฐ ๋ชจ๋“ˆ์€ ์ž…๋ ฅ ํŠน์ง• ๋งต ๋ฒกํ„ฐ๋ฅผ ์ฑ„๋„ ๋‹จ์œ„๋กœ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•  ์ˆ˜ ์žˆ๋„๋ก 0๋ถ€ํ„ฐ (CIโˆ’1)๊นŒ์ง€ ์ˆœ์ฐจ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฐ’ cIโˆˆ[0,CIโˆ’1] ์„ ์ƒ์„ฑํ•œ๋‹ค. ์ด ๊ฐ’์€ ์ฃผ์†Œ ๊ณ„์‚ฐ๊ธฐ ๋ชจ๋“ˆ์—์„œ ๊ฐ ์ฑ„๋„์— ๋งž๋Š” ๋ฉ”๋ชจ๋ฆฌ ์ฃผ์†Œ๋ฅผ ์ƒ์„ฑํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋œ๋‹ค.

์ด์ „ ํ•ฉ์„ฑ๊ณฑ ์ธต ๋ชจ๋“ˆ์—์„œ ์ „๋‹ฌ๋ฐ›์€ ํŠน์ง• ๋งต ๋ฒกํ„ฐ, O(Feat,cโˆ’1)์˜ ํฌ๊ธฐ๋Š” (1ร—1ร—CI)์ด๋ฉฐ ์ด๋Ÿฌํ•œ ๋ฒกํ„ฐ๋ฅผ ์ด (WIร—HI)๊ฐœ ์ˆ˜์‹ ํ•œ๋‹ค. ์ด์ „ ํ•ฉ์„ฑ๊ณฑ ์ธต์—์„œ O(Feat,cโˆ’1)๋ฅผ ์†ก์‹ ํ•  ๋•Œ ํ•ด๋‹น ๋ฒกํ„ฐ์˜ ๋†’์ด์™€ ๋„ˆ๋น„์— ๋Œ€ํ•œ ์ขŒํ‘œ ์ •๋ณด (hI,wI)๋„ ํ•จ๊ป˜ ์ „๋‹ฌํ•˜๋ฉฐ hIโˆˆ[0,HIโˆ’1] ์ด๊ณ  wIโˆˆ[0,WIโˆ’1] ์ด๋‹ค.

O(Feat,cโˆ’1)๋Š” ์ฑ„๋„ ๋‹จ์œ„๋กœ M(I,c)์— ์ €์žฅ๋  ๋•Œ ํŒจ๋”ฉ์„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๋ฉฐ ํŒจ๋”ฉ์˜ ํฌ๊ธฐ๊ฐ€ P๋ผ๊ณ  ํ–ˆ์„ ๋•Œ ํ•ด๋‹น ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์—์„œ ์‚ฌ์šฉํ•˜๋Š” ์ž…๋ ฅ ํŠน์ง• ๋งต, O(Feat,cโˆ’1)์˜ ๋†’์ด HP ๋ฐ ๋„ˆ๋น„ WP๋Š” HP=HI+2ร—P์™€ WP=WI+2ร—P๋กœ ๊ฒฐ์ •๋œ๋‹ค. ์ด๋ฅผ ๊ณ ๋ คํ•˜์—ฌ O(Feat,cโˆ’1)๋ฅผ M(I,c)์— ์ €์žฅํ•  ๋•Œ ์‚ฌ์šฉํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ์ฃผ์†Œ A(FW,c)๋Š” ์ˆ˜์‹ (11)๋กœ ์ •์˜๋˜๋ฉฐ ์—ฌ๊ธฐ์„œ ์‚ฌ์šฉ๋˜๋Š” ๋ณ€์ˆ˜ G๋Š” ์ˆ˜์‹ (12)์™€ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

(11)
A(FW,c)(hI,wI,cI)=G+(CIร—WP)ร—hI+CIร—wI+cI,
(12)
G=WPร—Pร—CI+Pร—CI.

์—ฌ๊ธฐ์„œ A(FW,c)์˜ ๋ฒ”์œ„๋Š” A(FW,c)โˆˆ[0,WPร—HPร—CPโˆ’1]์ด๋ฉฐ CI๊ฐœ์˜ O(Feat,cโˆ’1)๊ฐ€ ์ˆ˜์‹ ๋˜์—ˆ์„ ๋•Œ FW ๋ชจ๋“ˆ์˜ ๋™์ž‘์€ ์™„๋ฃŒ๋˜๋ฉฐ SP ๋ชจ๋“ˆ์˜ ์ƒํƒœ๋Š” ์ฝ๊ธฐ ์ƒํƒœ๋กœ ์ฒœ์ด๋œ๋‹ค. ๋˜ํ•œ ์™„๋ฃŒ ์‹ ํ˜ธ๋ฅผ FR ๋ชจ๋“ˆ์— ์ „๋‹ฌํ•˜๋ฉด์„œ Drec๋ฅผ ์ƒ์„ฑํ•œ๋‹ค.

3.3.2 FR (Feature Read) ๋ชจ๋“ˆ

FR ๋ชจ๋“ˆ์€ ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ์ปค๋„์ด ์ฐธ์กฐํ•˜๋Š” ์˜์—ญ์ธ ์ˆ˜์šฉ์˜์—ญ Drec์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด M(I,c)์— ์ €์žฅ๋œ O(Feat,cโˆ’1)์˜ ๊ฐ’์— ์ ‘๊ทผํ•ด์•ผ ํ•œ๋‹ค. FW ๋ชจ๋“ˆ์ด ํŒจ๋”ฉ์„ ๊ณ ๋ คํ•˜์—ฌ ์ €์žฅํ•œ O(Feat,cโˆ’1)์˜ ํฌ๊ธฐ๋Š” (WPร—HPร—CI)์ด๊ณ  FR ๋ชจ๋“ˆ์ด ์ƒ์„ฑํ•˜๋Š” Drec์˜ ํฌ๊ธฐ๋Š” ์ปค๋„์˜ ํฌ๊ธฐ์™€ ๊ฐ™์€ (WKร—HKร—CI)์ด๋‹ค.

๊ทธ๋ฆผ 2์—์„œ์™€ ๊ฐ™์ด ํ•ด๋‹น ๋ชจ๋“ˆ์€ 2๊ฐœ์˜ ํ•˜์œ„ ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, Caddr calculator ๋ชจ๋“ˆ์€ M(I,c)๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑํ•˜๊ณ ์ž ํ•˜๋Š” ์ˆ˜์šฉ์˜์—ญ, Drec์˜ ์ค‘์‹ฌ ์š”์†Œ๋ฅผ ์ฝ๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ๋ฉ”๋ชจ๋ฆฌ ์ ‘๊ทผ ์ฃผ์†Œ, Caddr์„ ๊ณ„์‚ฐํ•˜๊ณ  A(FR,c) Calculator ๋ชจ๋“ˆ์€ Caddr์„ ๊ธฐ์ค€์œผ๋กœ Drec์˜ ๋‚˜๋จธ์ง€ ์š”์†Œ๋“ค์˜ ๋ฉ”๋ชจ๋ฆฌ ์ฃผ์†Œ๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค.

A(FR,c) Calculator ๋ชจ๋“ˆ์—์„œ Drec์˜ ์š”์†Ÿ๊ฐ’์„ M(I,c)์—์„œ ์ฝ์–ด์˜ค๊ธฐ ์œ„ํ•œ ๋ฉ”๋ชจ๋ฆฌ ์ ‘๊ทผ ์ฃผ์†Œ A(FR,c)๋Š” ์ˆ˜์‹ (13)๊ณผ ๊ฐ™์ด ์ •์˜๋˜๋ฉฐ ์—ฌ๊ธฐ์„œ ์‚ฌ์šฉ๋˜๋Š” ๋ณ€์ˆ˜ Coffset์€ ์ˆ˜์‹ (14)๋กœ ์ •์˜๋œ๋‹ค.

(13)
A(FR,c)(hr,wr,cr,Caddr)=Caddrโˆ’Coffset+WPร—CIร—hr+CIร—wr+cr,
(14)
Coffset=HKโˆ’12ร—WPร—CIโˆ’WKโˆ’12ร—CI.

์ˆ˜์‹ (13)์—์„œ hr, wr, cr๋Š” Drec๋ฅผ ๊ธฐ์ค€์œผ๋กœ ํ•œ ๋†’์ด, ๋„ˆ๋น„, ์ฑ„๋„ ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์ขŒํ‘œ๋ฅผ ์˜๋ฏธํ•˜๊ณ  ๊ฐ ๋ณ€์ˆ˜์˜ ๋ฒ”์œ„๋Š” hrโˆˆ[0,HKโˆ’1], wrโˆˆ[0,WKโˆ’1], crโˆˆ[0,CIโˆ’1]๋กœ ์ •์˜๋œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ hr, wr, cr์ขŒํ‘œ์—์„œ์˜ Drec๊ฐ’์€ ์ˆ˜์‹ (15)์™€ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

(15)
[Drec](hr,wr,cr)=M(I,c)(A(FR,c)(hr,wr,cr,Caddr)).

๊ทธ๋ฆผ 5๋Š” O(Feat,cโˆ’1)๊ฐ€ ์ €์žฅ๋œ M(I,c)์—์„œ Drec๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์ ‘๊ทผํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ์˜์—ญ์„ ์‹œ๊ฐ์ ์œผ๋กœ ๋ณด์—ฌ์ค€๋‹ค. ๊ทธ๋ฆผ 5๋Š” ํ•˜๋‚˜์˜ ์ˆ˜์šฉ์˜์—ญ์— ํ•ด๋‹นํ•˜๋Š” ์š”์†Ÿ๊ฐ’๋“ค๊ณผ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅ๋œ ๊ฐ’๋“ค ์‚ฌ์ด์˜ ์—ฐ๊ด€์„ฑ์„ ์‹œ๊ฐํ™”ํ•ด์„œ ๋ณด์—ฌ์ค€๋‹ค. ์ˆ˜์‹ (15)๋Š” ์ด๋Ÿฌํ•œ ์—ฐ๊ด€์„ฑ์„ ํ† ๋Œ€๋กœ ๋„์ถœ๋œ ๊ฒƒ์ด๋‹ค. M(I,c)์˜ ์š”์†Œ๋“ค์„ ๋‚˜์—ดํ•˜์—ฌ ์ •๋ ฌํ•˜๋ฉด, O(Feat,cโˆ’1)๋ฅผ ๊ฐ€๋กœ WPร—CI, ์„ธ๋กœ HP ํฌ๊ธฐ์˜ ์ง์‚ฌ๊ฐํ˜• ๋ชจ์–‘์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์‚ฌ๊ฐํ˜• ์˜์—ญ์ธ ์ˆ˜์šฉ์˜์—ญ์˜ ํฌ๊ธฐ๋Š” ์ปค๋„์˜ ํฌ๊ธฐ์™€ ๋™์ผํ•˜๋ฉฐ ๊ฐ€๋กœ WKร—CI, ์„ธ๋กœ HK ํฌ๊ธฐ์˜ ์ง์‚ฌ๊ฐํ˜• ๋ชจ์–‘์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. a ์š”์†Œ์˜ ๊ฐ’์€ hr, wr, cr์ขŒํ‘œ๊ฐ€ (0,0,0)์ธ ์‹œ์ž‘ ์ขŒํ‘œ์—์„œ Drec์˜ ๊ฐ’์„ ์˜๋ฏธํ•˜๋ฉฐ c ์š”์†Œ์˜ ๊ฐ’์€ ์ขŒํ‘œ๊ฐ€ (HKโˆ’1,WKโˆ’1,CIโˆ’1)์ธ ๋งˆ์ง€๋ง‰ ์ขŒํ‘œ์—์„œ Drec์˜ ๊ฐ’์„ ์˜๋ฏธํ•œ๋‹ค. b ์š”์†Œ์˜ ๊ฐ’์€ Drec์˜ ์ค‘์‹ฌ ์š”์†Ÿ๊ฐ’์ด๋‹ค.

Caddr calculator ๋ชจ๋“ˆ์€ ์ˆ˜์‹ (13)์— ํ•„์š”ํ•œ Caddr์„ ์ƒ์„ฑํ•œ๋‹ค. Caddr์˜ ๊ณ„์‚ฐ ์ˆ˜์‹์€ ์ถœ๋ ฅ ํŠน์ง• ๋งต, O(Feat,c)์˜ ํ•˜๋‚˜์˜ ์š”์†Œ์™€ ์—ฐ๊ด€ ๋˜๋Š” O(Feat,cโˆ’1) ์œ„์— ๋†“์ด๋Š” Drec์˜ ์˜์—ญ์„ ๊ณ ๋ คํ•˜์—ฌ ๋„์ถœ๋˜๋ฉฐ ์ŠคํŠธ๋ผ์ด๋”ฉ์„ S๋ผ๊ณ  ํ–ˆ์„ ๋•Œ, ์ถœ๋ ฅ ํŠน์ง• ๋งต์˜ ๋†’์ด์™€ ๋„ˆ๋น„์ธ HO์™€ WO๋Š” ์ˆ˜์‹ (16)๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

(16)
HO=HPโˆ’HKS+1,WO=WPโˆ’WKS+1.

boldO(Feat,c)์˜ ์š”์†Œ๋ณ„ ์ขŒํ‘œ๋ฅผ (ho,wo,co)๋ผ ํ•˜๋ฉด ๊ฐ ์ขŒํ‘œ์ ์˜ ๋ฒ”์œ„๋Š” hoโˆˆ[0,HOโˆ’1], woโˆˆ[0,WOโˆ’1], coโˆˆ[0,COโˆ’1]์ด๋‹ค. ์ขŒํ‘œ (ho,wo)์—์„œ์˜ [O(Feat,c)](ho,wo,:)โˆˆR(CO)๋Š” ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ๋ชจ๋“ˆ์˜ ์ถœ๋ ฅ ๋ฒกํ„ฐ, O(Feat,c)๋กœ ๊ฒฐ์ •๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ๋ชจ๋“ˆ์€ ์ˆ˜์šฉ์˜์—ญ Drec๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„ O(Feat,c)๋ฅผ ๊ตฌํ•œ๋‹ค.

์ˆ˜์šฉ์˜์—ญ, Drec ๊ธฐ์ค€์˜ ์ขŒํ‘œ์  ํŠนํžˆ ์ค‘์•™ ์š”์†Œ์˜ ์ขŒํ‘œ์ ์„ ๊ทธ๋ฆผ 6์—์„œ์™€ ๊ฐ™์ด O(Feat,c)์˜ (ho,wo) ์ขŒํ‘œ์ ๊ณผ ์—ฐ๊ด€ ์ง€์„ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, [O(Feat,c)](ho,wo,:)๊ฐ’ ๊ณ„์‚ฐ์„ ์œ„ํ•œ Drec๋ฅผ M(I,c)์—์„œ ์ฝ์–ด์˜ค๊ธฐ ์œ„ํ•œ ์ ‘๊ทผ ์ฃผ์†Œ Caddr์€ ์ˆ˜์‹ (17)๊ณผ ๊ฐ™์ด ์ •์˜๋˜๋ฉฐ ์—ฌ๊ธฐ์„œ ์‚ฌ์šฉ๋˜๋Š” ๋ณ€์ˆ˜ Cโ‹†t๋Š” ์ˆ˜์‹ (18)๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

(17)
Caddr(ho,wo)=Cโ‹†t+WPร—CIร—Sร—ho+CIร—Sร—wo,
(18)
Cโ‹†t=HKโˆ’12ร—WP+WKโˆ’12.

FR ๋ชจ๋“ˆ์€ (HOร—WO)๋ฒˆ ๋ฐ˜๋ณตํ•˜์—ฌ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ๋ชจ๋“ˆ์„ ํ†ตํ•ด [O(Feat ,c)](h0,w0,:)๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์˜ ๊ฒฐ๊ณผ O(Feat,c)๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ๋™์ž‘์ด ์™„๋ฃŒ๋œ๋‹ค. FR ๋ชจ๋“ˆ์€ ๋™์ž‘์ด ์™„๋ฃŒ๋˜๋ฉด ์—ฐ์‚ฐ ์™„๋ฃŒ ์‹ ํ˜ธ๋ฅผ ์†ก์‹ ํ•˜๋ฉฐ SP ๋ชจ๋“ˆ์˜ ์œ ํ•œ ์ƒํƒœ ๋จธ์‹ ์€ ์ƒํƒœ๋ฅผ ์“ฐ๊ธฐ ์ƒํƒœ๋กœ ์ฒœ์ดํ•œ๋‹ค.

๊ทธ๋ฆผ 5. M(I,c)์—์„œ Drec๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์ ‘๊ทผํ•˜๋Š” ๋ฉ”๋ชจ๋ฆฌ ์˜์—ญ.

Fig. 5. The memory region accessed to generate Drec from M(I,c).

../../Resources/kiee/KIEE.2025.74.4.644/fig5.png

๊ทธ๋ฆผ 6. ์ถœ๋ ฅ ํŠน์ง• ๋งต O(Feat,c)์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด M(I,c)์—์„œ ์ฐธ์กฐ๋˜๋Š” ์˜์—ญ๊ณผ ๊ทธ ์ค‘์‹ฌ๊ฐ’.

Fig. 6. The region referenced in M(I,c) and its center value to create the output feature map, O(Feat,c).

../../Resources/kiee/KIEE.2025.74.4.644/fig6.png

3.4 ์™„์ „ ์—ฐ๊ฒฐ ์ธต (Fully-connected Layer) ๋ชจ๋“ˆ

ํ•ด๋‹น ๋ชจ๋“ˆ์€ ์™„์ „ ์—ฐ๊ฒฐ ์ธต์—์„œ c๋ฒˆ์งธ ์ธต์˜ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ๊ทธ๋ฆผ 7 (a)๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ์˜ ์™„์ „ ์—ฐ๊ฒฐ ๋ธ”๋ก ๋‚ด์—์„œ c๋ฒˆ์งธ ์™„์ „ ์—ฐ๊ฒฐ ์ธต์„ ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„ํ•œ ๊ฒƒ์ด๊ณ , ๊ทธ๋ฆผ 7 (b)๋Š” c๋ฒˆ์งธ ์™„์ „ ์—ฐ๊ฒฐ ์ธต์˜ ๋ชจ๋“ˆ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ํ•ด๋‹น ์•„ํ‚คํ…์ฒ˜๋Š” ๊ฐ€์ค‘์น˜์™€ ๋…ธ๋“œ ๊ฐ’์˜ ์—ฐ์‚ฐ์„ ๋‹ด๋‹นํ•˜๋Š” ์™„์ „ ์—ฐ๊ฒฐ ์ฝ”์–ด (FC core) ๋ชจ๋“ˆ๋“ค๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ํ•˜๋‚˜์˜ ์™„์ „ ์—ฐ๊ฒฐ ์ธต ๋ชจ๋“ˆ์—์„œ๋Š” ์ž…๋ ฅ ๋…ธ๋“œ, I(Node ,c)โˆˆR(LI) (ํ˜น์€ ์ด์ „ ์™„์ „ ์—ฐ๊ฒฐ ์ธต์˜ ์ถœ๋ ฅ ๋…ธ๋“œ, O(Node,cโˆ’1))์™€ ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ๋ฉ”๋ชจ๋ฆฌ, M(F,cโˆ’1)์™€ ๋ฉ”๋ชจ๋ฆฌ, M(FW,c)์—์„œ ๋ถˆ๋Ÿฌ์™€ MAC ์—ฐ์‚ฐ ์ˆ˜ํ–‰ํ•˜๋Š” ์™„์ „ ์—ฐ๊ฒฐ ์ฝ”์–ด ๋ชจ๋“ˆ๋กœ ์ „์†กํ•˜์—ฌ ๊ณฑ์…ˆ ๋ฐ ๋ˆ„์  ๋ง์…ˆ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

์™„์ „ ์—ฐ๊ฒฐ ์ฝ”์–ด ๋ชจ๋“ˆ์€ ์œ ํ•œ ์ƒํƒœ ๋จธ์‹ ์œผ๋กœ ์ œ์–ด๋˜๋ฉฐ, ์ตœ์ข… ์ถœ๋ ฅ ๋…ธ๋“œ, O(Node ,c)โˆˆR(LO)๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ๋ฉ”๋ชจ๋ฆฌ, M(F,c)์— ์ €์žฅํ•œ๋‹ค. ์ด๋•Œ M(F,c)๋Š” (c+1)๋ฒˆ์งธ ์™„์ „ ์—ฐ๊ฒฐ ์ธต ๋ชจ๋“ˆ์˜ ์ž…๋ ฅ ๋…ธ๋“œ๋กœ ์‚ฌ์šฉ๋œ๋‹ค. ์ž…๋ ฅ ๋…ธ๋“œ๊ฐ€ ์ €์žฅ๋œ ๋ฉ”๋ชจ๋ฆฌ, M(F,cโˆ’1)๊นŠ์ด๋Š” LI, ์ถœ๋ ฅ ๋…ธ๋“œ๊ฐ€ ์ €์žฅ๋œ ๋ฉ”๋ชจ๋ฆฌ, M(F,c)์˜ ๊นŠ์ด๋Š” LO, ๊ฐ€์ค‘์น˜๊ฐ€ ์ €์žฅ๋œ ๋ฉ”๋ชจ๋ฆฌ, M(FW,c)์˜ ๊นŠ์ด๋Š” LFW=LOร—LI๋กœ ์ •์˜๋œ๋‹ค.

์™„์ „ ์—ฐ๊ฒฐ ์ฝ”์–ด ๋ชจ๋“ˆ์—์„œ๋Š” ์ž…๋ ฅ ๋…ธ๋“œ๊ฐ€ ์ €์žฅ๋œ M(F,cโˆ’1)์˜ ์š”์†Ÿ๊ฐ’๋“ค์„ MAC ์—ฐ์‚ฐ์ฝ”์–ด๋“ค๋กœ ๋ถ„์‚ฐ์‹œ์ผœ ๋ง์…ˆ, ๊ณฑ์…ˆ ์—ฐ์‚ฐ์„ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์—ฐ์‚ฐ์„ ๋งˆ์นœ ์ถœ๋ ฅ ๋…ธ๋“œ์˜ mโˆˆ[1,LO]๋ฒˆ์งธ ์š”์†Œ์ธ [O(Node,c)](m)์€ ์ˆ˜์‹ (19)์™€ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

(19)
[O(Node,c)](m)=โˆ‘LIk=1([I(Node,c)](k)ร—M(FW,c)(kร—m)).

์ˆ˜์‹ (19)์—์„œ [I(Node,c)](k)๋Š” ์ž…๋ ฅ ๋…ธ๋“œ์˜ kโˆˆ[1,LI]๋ฒˆ์งธ ์š”์†Œ์˜ ๊ฐ’์ด๋ฉฐ, ์ด๋Š” M(F,cโˆ’1)(k)์™€ ๋™์ผํ•˜๊ณ , [O(Node,c)](m)๋Š” M(F,c)(m)์™€ ๋™์ผํ•˜๋‹ค.

์ˆ˜์‹ (19)๋ฅผ ์ˆ˜์‹ (20)๊ณผ ๊ฐ™์ด ์žฌ์ž‘์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ,

(20)
Om=โˆ‘LIk=1(ikร—w(k,m)),

์—ฌ๊ธฐ์„œ ik๋Š” ์ž…๋ ฅ ๋…ธ๋“œ์˜ k๋ฒˆ์งธ ์š”์†Œ์˜ ๊ฐ’, [I(Node,c)](k)์ด๊ณ , w(k,m)์€ ๊ฐ€์ค‘์น˜๊ฐ€ ์ €์žฅ๋˜์–ด ์žˆ๋Š” ๋ฉ”๋ชจ๋ฆฌ, M(FW,c)์˜ (kร—m)๋ฒˆ์งธ ์š”์†Œ์ธ M(FW,c)(kร—m)์ด๋‹ค.

์™„์ „ ์—ฐ๊ฒฐ ์ฝ”์–ด ๋ชจ๋“ˆ์€ ์ถœ๋ ฅ ๋…ธ๋“œ์˜ ํ•œ ๊ฐœ์˜ ์š”์†Œ์— ๋Œ€ํ•ด์„œ๋งŒ ์—ฐ์‚ฐํ•˜๋Š” ๋ชจ๋“ˆ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ถœ๋ ฅ ๋…ธ๋“œ์˜ ๋ชจ๋“  ์š”์†Œ์— ๋Œ€ํ•œ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ทธ๋ฆผ 7 (b)์™€ ๊ฐ™์ด LO๊ฐœ์˜ ์™„์ „ ์—ฐ๊ฒฐ ์ฝ”์–ด ๋ชจ๋“ˆ์ด ๋ณ‘๋ ฌ๋กœ ๋™์ž‘ํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ๊ฐ–์ถฐ์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด LO๊ฐœ์˜ ๋ชจ๋“ˆ์ด ๋ณ‘๋ ฌ๋กœ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ตœ์ข…์ ์œผ๋กœ LO๊ฐœ์˜ ์ถœ๋ ฅ ๋…ธ๋“œ๊ฐ€ M(F,c)์— ์ €์žฅ๋œ๋‹ค.

๊ทธ๋ฆผ 7. (a) ์™„์ „ ์—ฐ๊ฒฐ ์ธต์˜ ์—ฐ์‚ฐ ๊ณผ์ •, (b) ์™„์ „ ์—ฐ๊ฒฐ ์ธต์˜ ํ•˜๋“œ์›จ์–ด ์•„ํ‚คํ…์ฒ˜.

Fig. 7. (a) the computation process of the Fully-connected Layer, (b) Hardware architecture of a Fully-connected Layer.

../../Resources/kiee/KIEE.2025.74.4.644/fig7.png

4. RTL ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒ€์ฆ

๋ณธ ์žฅ์—์„œ๋Š” 3์žฅ์—์„œ ์„ค๊ณ„ํ•œ ํ•ฉ์„ฑ๊ณฑ ์ธต ํ•˜๋“œ์›จ์–ด๋ฅผ ์ด์šฉํ•˜์—ฌ ํ‘œ 1์˜ ๋ฐ์ดํ„ฐ์…‹๋ณ„ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•œ๋‹ค. ๊ตฌ์„ฑํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ํ•˜๋“œ์›จ์–ด๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด RTL ์ˆ˜์ค€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ•ด๋‹น ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ๋Š” ์†Œํ”„ํŠธ์›จ์–ด๋กœ ํ•™์Šต ๋ฐ ์–‘์žํ™”ํ•œ ๊ฐ€์ค‘์น˜๋ฅผ ํ•˜๋“œ์›จ์–ด๋กœ ๋ถˆ๋Ÿฌ์˜จ ๋’ค ํ•™์Šต์— ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ์…‹์˜ ๊ฒ€์ฆ์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ถ”๋ก  ์ •ํ™•๋„๋ฅผ ๊ตฌํ•œ๋‹ค. ํ•ด๋‹น ํ•˜๋“œ์›จ์–ด ์ถ”๋ก  ์ •ํ™•๋„๋ฅผ ์†Œํ”„ํŠธ์›จ์–ด ์ถ”๋ก  ์ •ํ™•๋„์™€ ๋น„๊ตํ•จ์œผ๋กœ์จ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ ์ •ํ™•์„ฑ์„ ๋ณด์ธ๋‹ค.

4.1 ํŒŒ์ดํ”„๋ผ์ด๋‹ ๊ฒ€์ฆ

ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„์˜ ์žฅ์ ์€ ์—ฐ์‚ฐ์„ ๋‹จ๊ณ„๋ณ„๋กœ ์ˆ˜ํ–‰ํ•˜์—ฌ ๊ฐ ๋‹จ๊ณ„๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ํŒŒ์ดํ”„๋ผ์ด๋‹ ๋ฐฉ์‹์— ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์—ฐ์‚ฐ ํšจ์œจ์„ ๊ทน๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆผ 8์€ ํ‘œ 2์˜ Convolution Block์—์„œ์™€ ๊ฐ™์ด 5๊ฐœ์˜ ํ•ฉ์„ฑ๊ณฑ ์ธต ๋ชจ๋“ˆ์„ ์—ฐ๊ฒฐํ•˜์—ฌ ์—ฐ์†์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅํ–ˆ์„ ๋•Œ ์ƒ์„ฑ๋˜๋Š” ํŒŒํ˜•์„ ๋ณด์—ฌ์ค€๋‹ค. ํŒŒํ˜•์—์„œ โ€œRUN_nFโ€ ์‹ ํ˜ธ๊ฐ€ 1์ด๋ฉด n๋ฒˆ์งธ ๋ชจ๋“ˆ์ด ํ˜„์žฌ ์—ฐ์‚ฐ ์ˆ˜ํ–‰ ์ค‘์ž„์„ ์˜๋ฏธํ•œ๋‹ค. n๋ฒˆ์งธ ๋ชจ๋“ˆ์€ (n+1)๋ฒˆ์งธ ๋ชจ๋“ˆ์˜ ์—ฐ์‚ฐ์ด ์™„๋ฃŒ๋œ ํ›„์— ์ƒˆ๋กœ์šด ์—ฐ์‚ฐ์„ ์‹œ์ž‘ํ•  ์ค€๋น„๊ฐ€ ๋œ๋‹ค. ํ•ด๋‹น ํŒŒํ˜•์—์„œ ๋นจ๊ฐ„์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋œ ๋ถ€๋ถ„์„ ๋ณด๋ฉด, n๋ฒˆ์งธ ๋ชจ๋“ˆ์ด (n+1)๋ฒˆ์งธ ๋ชจ๋“ˆ์˜ ์ž‘์—…์ด ์™„๋ฃŒ๋˜๋ฉด ์ƒˆ๋กœ์šด ์—ฐ์‚ฐ์„ ์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด๋Ÿฌํ•œ ์—ฐ์‚ฐ ๋ฐฉ์‹์€ ์—ฌ๋Ÿฌ ๋ฐ์ดํ„ฐ๊ฐ€ ์—ฐ์†์œผ๋กœ ์ž…๋ ฅ๋  ๋•Œ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•œ๋‹ค. ํ•œ ๊ฐœ์˜ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ 5๊ฐœ์˜ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต ๋ชจ๋“ˆ์„ ์ˆœ์ฐจ์ ์œผ๋กœ ํ†ต๊ณผํ•˜๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์„ TL๋กœ ์ •์˜ํ•œ๋‹ค. ๊ฐ ์ธต์€ ๋…๋ฆฝ์ ์œผ๋กœ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋ฏ€๋กœ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์—ฐ์†์ ์œผ๋กœ ๋“ค์–ด์˜จ๋‹ค๋ฉด ์ฒซ ๋ฒˆ์งธ ๋ฐ์ดํ„ฐ D1์— ๋Œ€ํ•œ ์ถœ๋ ฅ์€ TL ์ดํ›„์— ๋‚˜์˜ค๊ณ , ๊ทธ๋‹ค์Œ n๋ฒˆ์งธ ๋ฐ์ดํ„ฐ Dn์— ๋Œ€ํ•œ ์ถœ๋ ฅ์€ TH์ฃผ๊ธฐ๋กœ ์‚ฐ์ถœ๋˜๋ฉฐ, TH<TL์ด๋‹ค. ์ด๋Š” ์—ฐ์† ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ํ•˜๋“œ์›จ์–ด๊ฐ€ ํšจ์œจ์ ์œผ๋กœ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.

๊ทธ๋ฆผ 8. 5๊ฐœ๋กœ ์—ฐ๊ฒฐ๋œ ํ•ฉ์„ฑ๊ณฑ ์ธต ๋ชจ๋“ˆ์˜ ์—ฐ์†์œผ๋กœ ์ž…๋ ฅ๋˜๋Š” ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒ€์ฆ ํŒŒํ˜•.

Fig. 8. A waveform of sequentially input data through five connected convolution layter modules.

../../Resources/kiee/KIEE.2025.74.4.644/fig8.png

4.2 ๋ชจ๋ธ ๋™์ž‘ ๊ฒ€์ฆ

๊ทธ๋ฆผ 9์˜ ๊ฒฐ๊ณผ ํŒŒํ˜•์€ ๋ชจ๋“  ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์˜ ์ž…๋ ฅ ํŠน์ง• ๋งต๊ณผ ์ถœ๋ ฅ ํŠน์ง• ๋งต์˜ ํฌ๊ธฐ๋ฅผ (3ร—3ร—CI)๋กœ ์„ค์ •ํ•˜๊ณ  5๊ฐœ์˜ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต ๋ชจ๋“ˆ์„ ์—ฐ๊ฒฐํ•˜์—ฌ ์—ฐ์†์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅํ–ˆ์„ ๋•Œ ์ƒ์„ฑ๋˜๋Š” ํŒŒํ˜•์„ ๋ณด์—ฌ์ค€๋‹ค. โ€œDONE_nFโ€ ์‹ ํ˜ธ๋Š” n๋ฒˆ์งธ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์˜ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ฝ”์–ด ๋ชจ๋“ˆ์—์„œ ํ•˜๋‚˜์˜ ์ถœ๋ ฅ ํŠน์ง• ๋งต ๋ฒกํ„ฐ, O(Feat,n)๊ฐ€ ๊ณ„์‚ฐ์ด ์™„๋ฃŒ๋˜์—ˆ์„ ๋•Œ ์ถœ๋ ฅ๋˜๋Š” ์‹ ํ˜ธ์ด๋‹ค. n๋ฒˆ์งธ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์˜ ์ž…๋ ฅ ํŠน์ง• ๋งต์˜ ํฌ๊ธฐ๊ฐ€ (3ร—3ร—CI)๊ฐ€ ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” (nโˆ’1)๋ฒˆ์งธ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์—์„œ์˜ ์ถœ๋ ฅ ํŠน์ง• ๋งต, O(Feat,nโˆ’1)์˜ ํฌ๊ธฐ๊ฐ€ (3ร—3ร—CI)๊ฐ€ ๋˜์–ด์•ผ ํ•˜๊ณ , ์ด๋Š” 9๊ฐœ์˜ ์ถœ๋ ฅ ํŠน์ง• ๋ฒกํ„ฐ, O(Feat,nโˆ’1)๊ฐ€ ๊ณ„์‚ฐ๋˜์–ด์•ผ ํ•œ๋‹ค. ๊ฒฐ๊ณผ ํŒŒํ˜•์—์„œ๋„ ์ •ํ™•ํžˆ 9๋ฒˆ์˜ โ€œDONE_nFโ€ ์‹ ํ˜ธ๊ฐ€ ์ถœ๋ ฅ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์ด ์ •ํ™•ํžˆ ์ˆ˜ํ–‰๋จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 10์€ ํ•˜๋‚˜์˜ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต์˜ ์ž…๋ ฅ ํŠน์ง• ๋งต์˜ ํฌ๊ธฐ๋ฅผ (6ร—6ร—1), ์ปค๋„์˜ ํฌ๊ธฐ๋ฅผ (3ร—3ร—1)๋กœ ์„ค์ •ํ•˜๊ณ  ์ŠคํŠธ๋ผ์ด๋”ฉ S์™€ ํŒจ๋”ฉP์— ๋”ฐ๋ผ ์ถœ๋ ฅ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•œ ํŒŒํ˜•์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ทธ๋ฆผ 10 (a)๋Š” P=0,S=1์ผ ๋•Œ์˜ ํŒŒํ˜•์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ๊ทธ๋ฆผ 10 (b)๋Š” P=0,S=2์ผ ๋•Œ์˜ ํŒŒํ˜•์„ ๋‚˜ํƒ€๋‚ด๊ณ , ๊ทธ๋ฆผ 10 (c)๋Š” P=1,S=1์ผ ๋•Œ์˜ ํŒŒํ˜•์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. โ€œWRITEโ€ ์‹ ํ˜ธ๋Š” ๊ฐ’์ด 1์ผ ๋•Œ ํ˜„์žฌ ๋ฉ”๋ชจ๋ฆฌ์— ์ž…๋ ฅ ํŠน์ง• ๋งต์˜ ์š”์†Œ๊ฐ€ ์ €์žฅ๋˜๊ณ  ์žˆ์Œ์„ ์˜๋ฏธํ•˜๊ณ , โ€œDONE_WRITEโ€ ์‹ ํ˜ธ๋Š” ํ•˜๋‚˜์˜ ์š”์†Œ๊ฐ€ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅ๋˜์—ˆ์„ ๋•Œ 1๋กœ ์ฒœ์ดํ•œ๋‹ค. โ€œCALCโ€ ์‹ ํ˜ธ๊ฐ€ 1์ด๋ฉด ์ถœ๋ ฅ ํŠน์ง• ๋งต์„ ์ƒ์„ฑํ•˜๊ณ  ์žˆ์Œ์„ ์˜๋ฏธํ•˜๊ณ , โ€œDONE_CALCโ€ ์‹ ํ˜ธ๋Š” ์ถœ๋ ฅ ํŠน์ง• ๋งต ์š”์†Œ ํ•œ ๊ฐœ๊ฐ€ ์ƒ์„ฑ๋˜์—ˆ์„ ๋•Œ 1๋กœ ์ฒœ์ดํ•œ๋‹ค. ์ˆ˜์‹ (16)์— ๋”ฐ๋ผ ์ถœ๋ ฅ ํŠน์ง• ๋งต์˜ ํฌ๊ธฐ๋Š” P=0,S=1์ผ ๋•Œ (4ร—4ร—1), P=0,S=2์ผ ๋•Œ (2ร—2ร—1), P=1,S=1์ผ ๋•Œ (6ร—6ร—1)์œผ๋กœ ๊ณ„์‚ฐ๋˜๋ฉฐ, ์ด๋Š” ๊ฐ๊ฐ ์ถœ๋ ฅ ํŠน์ง• ๋งต ์š”์†Œ๊ฐ€ 16, 4, 36๊ฐœ ์ƒ์„ฑ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ฒฐ๊ณผ ํŒŒํ˜•์—์„œ ๊ฐ๊ฐ 16, 4, 36๊ฐœ์˜ ์ถœ๋ ฅ ํŠน์ง• ๋งต ์š”์†Œ๊ฐ€ ์ƒ์„ฑ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๊ณ , ์ด๋Š” ํŒจ๋”ฉ๊ณผ ์ŠคํŠธ๋ผ์ด๋”ฉ์— ๋Œ€ํ•ด ๋ชจ๋ธ์ด ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ๋™์ž‘ํ•˜๊ณ  ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.

๊ทธ๋ฆผ 9. ์ถœ๋ ฅ ํŠน์ง• ๋งต ์ด ๋งŒ๋“ค์–ด์ง€๋Š” ๊ณผ์ •์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒ€์ฆ ํŒŒํ˜•.

Fig. 9. A waveform of the process of generating the output feature map.

../../Resources/kiee/KIEE.2025.74.4.644/fig9.png

๊ทธ๋ฆผ 10. ์ŠคํŠธ๋ผ์ด๋”ฉ S์™€ ํŒจ๋”ฉ P๊ฐ’์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒ€์ฆ ํŒŒํ˜•. (a) P=0,S=1, (b) P=0,S=2, (c) P=1,S=1.

Fig. 10. A waveform of results for stride and padding values. (a) P=0,S=1, (b) P=0,S=2, (c) P=1,S=1.

../../Resources/kiee/KIEE.2025.74.4.644/fig10.png

4.3 ์†Œํ”„ํŠธ์›จ์–ด ๋ชจ๋ธ๊ณผ์˜ ์ •ํ™•๋„ ๋น„๊ต

2์žฅ์—์„œ ๋„์ถœํ•œ ์–‘์žํ™”๋œ ๊ฐ€์ค‘์น˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ตฌํ˜„๋œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ๋ชจ๋ธ์— ๋Œ€ํ•ด ๊ฐ ๋ฐ์ดํ„ฐ์…‹(MNIST์™€ Fashion MNIST)๋ณ„๋กœ 1,000์žฅ์˜ ๊ฒ€์ฆ์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.

ํ‘œ 3์€ ์–‘์žํ™” ๊ธฐ๋ฒ•(PTQ์™€ QAT)์— ๋”ฐ๋ผ ์†Œํ”„ํŠธ์›จ์–ด์™€ ํ•˜๋“œ์›จ์–ด ํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰๋œ ์ถ”๋ก ์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, MNIST ๋ฐ์ดํ„ฐ์…‹์—์„œ PTQ๋Š” 96.6%, QAT๋Š” 96.9%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, Fashion MNIST ๋ฐ์ดํ„ฐ์…‹์—์„œ๋Š” ๊ฐ๊ฐ 91.7%์™€ 91.5%์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด์™€ ํ•˜๋“œ์›จ์–ด ํ™˜๊ฒฝ ๋ชจ๋‘์—์„œ ๋™์ผํ•œ ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋ƒˆ์œผ๋ฉฐ, ์ด๋Š” ์ œ์•ˆ๋œ ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„๊ฐ€ ์†Œํ”„ํŠธ์›จ์–ด ๋ชจ๋ธ์˜ ์ถ”๋ก  ๊ฒฐ๊ณผ๋ฅผ ์ •ํ™•ํžˆ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์Œ์„ ์ž…์ฆํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„์™€ ๊ตฌํ˜„์ด ์ •ํ™•ํ•˜๊ณ  ์‹ ๋ขฐ์„ฑ ์žˆ๊ฒŒ ์ด๋ฃจ์–ด์กŒ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.

ํ‘œ 3 ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด์—์„œ์˜ ์ถ”๋ก  ์ •ํ™•๋„ ๋น„๊ต.

Table 3 Comparison of inference accuracy in hardware and software.

Quantization

Accuracy

MNIST

Fashion MNIST

Software

Hardware

Software

Hardware

PTQ

96.6

96.6

91.7

91.7

QAT

96.9

96.9

91.5

91.5

5. ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๊ณ„ํš

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค์‹œ๊ฐ„ ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์œ„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ๋ชจ๋ธ์˜ ํ•˜๋“œ์›จ์–ด๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ๋Š” ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต๊ณผ ์™„์ „ ์—ฐ๊ฒฐ ์ธต์„ ์ ์ธตํ•˜์—ฌ ๊ตฌ์„ฑํ•˜๋ฉฐ ์ด๋ฅผ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต ๋ฐ ์™„์ „ ์—ฐ๊ฒฐ ์ธต์— ๋Œ€ํ•œ ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„๋ฅผ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด 5๊ฐœ์˜ ์ฝ˜๋ณผ๋ฃจ์…˜ ์ธต๊ณผ 3๊ฐœ์˜ ์™„์ „ ์—ฐ๊ฒฐ ์ธต์œผ๋กœ ๊ตฌ์„ฑ๋œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ๋ชจ๋ธ์„ ์†Œํ”„ํŠธ์›จ์–ด๋กœ ํ•™์Šตํ•˜๊ณ  ์–‘์žํ™”ํ•˜์—ฌ ์–ป์€ ํ•˜๋“œ์›จ์–ด ์ ํ•ฉ ๊ฐ€์ค‘์น˜๋ฅผ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ํ•˜๋“œ์›จ์–ด์—์„œ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ด๋ฅผ MNIST์™€ Fashion MNIST ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜์—ฌ RTL ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์†Œํ”„ํŠธ์›จ์–ด์™€ ํ•˜๋“œ์›จ์–ด์—์„œ์˜ ์ถ”๋ก  ์ •ํ™•๋„๊ฐ€ ์™„๋ฒฝํ•˜๊ฒŒ ์ผ์น˜ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ๋˜์—ˆ์Œ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ตฌํ˜„ํ•œ ํ•˜๋“œ์›จ์–ด ๋ชจ๋ธ์„ FPGA์—์„œ ๊ตฌํ˜„ํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅํ•œ์ง€ ํ™•์ธํ•  ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ•˜๋“œ์›จ์–ด ๋ชจ๋ธ์˜ ์‹ค์‹œ๊ฐ„ ๋™์ž‘์„ฑ์„ ๊ฒ€์ฆํ•  ๊ณ„ํš์ด๋‹ค. ๋˜ํ•œ, ์„ค๊ณ„์— ์‚ฌ์šฉ๋œ BRAM์˜ ์šฉ๋Ÿ‰์ด ์ œํ•œ์ ์ด๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ๋” ํฐ ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰์„ ์ œ๊ณตํ•˜๋Š” DRAM์„ ์‚ฌ์šฉํ•˜์—ฌ ํ•˜๋“œ์›จ์–ด ๋ชจ๋ธ์„ ์žฌ๊ตฌํ˜„ ๋ฐ ๊ฒ€์ฆํ•  ๊ณ„ํš์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด DRAM๊ณผ์˜ ์›ํ™œํ•œ ์—ฐ๊ฒฐ์„ ์œ„ํ•œ ๋™์  ๋ฉ”๋ชจ๋ฆฌ ์ปจํŠธ๋กค๋Ÿฌ (DDR) ์„ค๊ณ„๋ฅผ ์ถ”๊ฐ€๋กœ ์ง„ํ–‰ํ•  ๊ฒƒ์ด๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” AI ๊ฐ€์†๊ธฐ ๊ฐœ๋ฐœ์— ๊ธฐ์—ฌํ•  ๊ฒƒ์ด๋‹ค.

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1G1A1007058, RS-2024-004648).

References

1 
Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, โ€œGradient-based learning applied to document recognition,โ€ Proceedings of the IEEE Conference, vol. 82, no. 11, pp. 2278-2324, 1998. DOI:10.1109/5.726791DOI
2 
A. Krizhevsky, I. Sutskever and G. E. Hinton, โ€œImageNet classification with deep convolutional neural networks,โ€ Communications of the Association for Computing Machinery (ACM), vol. 60, no. 6, pp. 84-90, 2017. DOI:10.1145/3065386DOI
3 
K. Simonyan and A. Zisserman, โ€œVery Deep Convolutional Networks for Large-Scale Image Recognition,โ€ Proceeding of 3rd International Conference on Learning Representations, (ICLR), May 7-9, 2015.DOI
4 
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, โ€œGoing deeper with convolutions,โ€ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-9, 2015.DOI:10.1109/CVPR.2015.7298594DOI
5 
M. tan and Q. Le, โ€œEfficientnet: Rethinking model scaling for convolutional neural networks,โ€ Proceedings of the 36th International Conference on Machine Learning (ICML), vol. 97, pp. 9-15, 2015.URL
6 
A. Howard, M. Zhu, B. Chen, D.Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam, โ€œMobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,โ€ CoRR abs/1704.04861, 2017.DOI
7 
K. He, X. Zhang, S. Ren and J. Sun, โ€œDeep Residual Learning for Image Recognition,โ€ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.DOI:10.1109/CVPR.2016.90DOI
8 
Y. M. Park, S. Y. Ahn, E. J. Lim, Y. S Choi, Y. C. Woo, W. Choi, โ€œDeep Learning Model Parallelism,โ€ Electronics and Telecommunications Trends, vol. 33, no. 4, pp. 1-13, 2018.DOI:10.22648/ETRI.2018.J.330401DOI
9 
Y. J. Lee, Y. H. Moon, J. Y. Park, O. G. Min, โ€œRecent R&D Trends for Lightweight Deep Learning,โ€ Electronics and Telecommunications Trends, vol. 34, no. 2, pp. 40-50, 2019.DOI:10.22648/ETRI.2019.J.340205DOI
10 
J. D. Choi, K. W. Min, J. H. Kim, B. S. Seo, D. H. Kim, D. S. Yoo, J. I. Cho, โ€œZero Accident, Connected Autonomous Driving Vehicle,โ€ Electronics and Telecommunications Trends, vol. 36, no. 2, pp. 21-31, 2021.DOI:10.22648/ETRI.2021.J.360103DOI
11 
L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike and R.Lowe, โ€œTraining language models to follow instructions with human feedback,โ€ Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems (NeurIPS), vol. 35, pp. 27730-27744, 2022.URL
12 
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei and I. Sutskerver, โ€œLanguage Models are Unsupervised Multitask Learners,โ€ OpenAI blog, 1(8), vol. 1, no. 8, pp. 9, 2019.URL
13 
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, โ€œLanguage Models are Few-Shot Learners,โ€ Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems, (NeurIPS), vol. 33, pp. 1877-1901, 2020.URL
14 
M. Y. Lee, J. Chung, J. H. Lee, J. H. Han, Y. S. Kwon, โ€œTrends in AI Processor Technology,โ€ Electronics and Telecommunications Trends, vol. 35, no. 3, pp. 65-75, 2020.DOI:10.22648/ETRI.2020.J.350307DOI

์ €์ž์†Œ๊ฐœ

์ด์ข…์œค(Jong-Youn Lee)
../../Resources/kiee/KIEE.2025.74.4.644/au1.png

He received the B.S degree in Electronic Engineering from Kumoh National Institute of Technology, Korea, in 2024. He is currently pursuing the M.S. degree in Semiconductor System Engineering from Kumoh National Institute of Technology, Korea. His research interests include design and simulation analysis of deep neural networks on FPGA using Verilog HDL.

์„œ์ •์œค(Jeong-Yun Seo)
../../Resources/kiee/KIEE.2025.74.4.644/au2.png

He received the B.S. degree in Electronic Engineering, and has been working toward the M.S. degree in Semiconductor System Engineering from Kumoh National Institute of Technology, in 2024. His research interests include H/W-oriented trainable activation functions, compressed AI Hardware Design, and AI based systems. He received Research grant for master's degree students, National Research Foundation of Korea in 2024.

๋ฐ•์„ฑ์ค€(Sung-Jun Park)
../../Resources/kiee/KIEE.2025.74.4.644/au3.png

He received his B.S. degree in Electronic Engineering from the Kumoh National Institute of Technology, Korea, in 2024. He is currently pursuing the M.S. degree in Semiconductor System Engineering from Kumoh National Institute of Technology, Korea. His research focuses on AI based semantic segmentation of autonomous vehicles in softwarte and hardware.

์ดํ•˜๋ฆผ(Harim Lee)
../../Resources/kiee/KIEE.2025.74.4.644/au4.png

He received the B.S. degree in Electrical Engineering from Kyungpook National University, Daegu, South Korea, in 2013, the M.S. degree in IT Convergence Engineering from the Pohang University of Science and Technology (POSTECH), Pohang, South Korea, in 2015, and the Ph.D. degree from the School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea, in August 2020. Since September 2021, he has been an Assistant Professor with the School of Electronic Engineering, Kumoh National Institute of Technology, Gumi, South Korea. His research interests include Intelligent system based on Deep Learning and Implementing deep neural networks on FPGA using Verilog HDL.

์ด์šฉํ™˜(Yong-Hwan Lee)
../../Resources/kiee/KIEE.2025.74.4.644/au5.png

He received the B.S. degree in Electronic Engineering from Yonsei University, Korea, in 1993, the M.S. degree in Electronic Engineering from Yonsei University, Korea, in 1995, and the Ph.D degree in Electronic Engineering from Yonsei University, Korea, in 1999. He was a researcher in Hynix Semiconductor from 1999 to 2002. He was a senior research engineer in Samsung Electronics from 2003 to 2004. Since 2004, he has been a professor with School of Electronic Engineering, Kumoh National Institute of Technology. His research interests include Digital SoC, MIPI and Verilog HDL.