• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (School of Electrical Engineering, Pukyong National University, Republic of Korea.)



Convolutional Neural Network, Deep Learning, Harmonic Spectrum Analysis, Image Processing, Pattern Recognition

1. ์„œ ๋ก 

์ง€์† ๊ฐ€๋Šฅํ•œ ๊ณ ํšจ์œจ ์ „๋ ฅ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์˜ ํ•„์š”์„ฑ์€ ์‹ ์žฌ์ƒ ์—๋„ˆ์ง€ ์ฆ๊ฐ€์™€ ์Šค๋งˆํŠธ ๊ทธ๋ฆฌ๋“œ ๊ธฐ์ˆ ์˜ ๊ณ ๋„ํ™”๋กœ ์ด์–ด์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ณ€ํ™” ๊ณผ์ •์—์„œ ๋‹ค์–‘ํ•œ ์ „๋ ฅ๋ณ€ํ™˜์žฅ์น˜์˜ ์‚ฌ์šฉ์ด ๊ณ„์†ํ•ด์„œ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ „๋ ฅ๋ณ€ํ™˜์žฅ์น˜๋Š” ์ „๋ ฅ ๊ณต๊ธ‰์˜ ํšจ์œจ์„ฑ์„ ๋†’์ด๋Š” ๋ฐ ๊ธฐ์—ฌํ•˜์ง€๋งŒ, ๋™์‹œ์— ์Šค์œ„์นญ ๋™์ž‘ ๋ฐ ๋น„์„ ํ˜• ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ๊ณ ์กฐํŒŒ ์™œ๊ณก์„ ์œ ๋ฐœํ•˜๋Š” ์ฃผ์š” ์›์ธ์ด ๋œ๋‹ค. ๊ณ„ํ†ต ๋‚ด ๊ณ ์กฐํŒŒ ์™œ๊ณก์ด ์‹ฌํ™”๋  ๊ฒฝ์šฐ ์ถ”๊ฐ€์ ์ธ ์ „๋ ฅ ์†์‹ค์„ ๋น„๋กฏํ•ด ์„ค๋น„ ๊ณผ์—ด, ํ†ต์‹  ์žฅ์• , ๊ธฐ๊ธฐ ์˜ค์ž‘๋™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค[1-3]. ์žฅ๊ธฐ์ ์ธ ๊ด€์ ์—์„œ ๊ณ ์กฐํŒŒ๋Š” ์„ค๋น„์˜ ๊ณ ์žฅ ๋ฐ ๊ณ„ํ†ต ์šด์ „์˜ ์•ˆ์ •์„ฑ์„ ์ €ํ•˜์‹œํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๊ณ„ํ†ต ์„ค๊ณ„ ๋ฐ ์šด์˜ ์‹œ ๊ณ ์กฐํŒŒ์— ๋Œ€ํ•œ ๊ณ ๋ ค๋Š” ํ•„์ˆ˜์ ์ด๋‹ค[4].

์ „์•• ๋ฐ ์ „๋ฅ˜์— ํฌํ•จ๋œ ๊ณ ์กฐํŒŒ ์„ฑ๋ถ„์˜ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์„ ์œ„ํ•ด FT(Fourier Transform), FFT(Fast Fourier Transform), WT(Wavelet Transform)๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋“ค์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค[5-6]. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋“ค์€ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์šฉํ•œ ๋ฐฉ๋ฒ•์ด์ง€๋งŒ, ๋ถ„์„ ๊ณผ์ •์—์„œ ์‹ ํ˜ธ์˜ ์ˆ˜์น˜ ๋ฐ์ดํ„ฐ๋‚˜ ์—ฌ๋Ÿฌ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •์ด ํ•„์ˆ˜์ ์œผ๋กœ ์š”๊ตฌ๋œ๋‹ค[7]. FFT์˜ ๊ฒฝ์šฐ, ์ •ํ™•ํ•œ ๋ถ„์„์„ ์œ„ํ•ด ์ถฉ๋ถ„ํžˆ ์ƒ˜ํ”Œ๋ง๋œ ์ฃผ๊ธฐ์  ์‹ ํ˜ธ๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ, ์‹ค์ œ ๊ณ„์ธก์—์„œ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ฒฐ์ธก๋˜๊ฑฐ๋‚˜ ์‹ ํ˜ธ์˜ ์ด๋ฏธ์ง€๋งŒ ํš๋“๋˜๋Š” ๊ฒฝ์šฐ์—๋Š” ๋ถ„์„ ๊ฒฐ๊ณผ์˜ ์™œ๊ณก์„ ์ดˆ๋ž˜ํ•˜๊ฑฐ๋‚˜ ๋ถ„์„์ด ๋ถˆ๊ฐ€๋Šฅํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ WT์˜ ๊ฒฝ์šฐ, ๋ชจํ•จ์ˆ˜(mother wavelet)์˜ ์„ ํƒ๊ณผ ์Šค์ผ€์ผ, ๋ถ„ํ•ด ์ˆ˜์ค€ ๋“ฑ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •์ด ๋ถ„์„ ๊ฒฐ๊ณผ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค[8]. ๋”ฐ๋ผ์„œ ๋ถ€์ ์ ˆํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •์€ ์‹ ํ˜ธ์˜ ์ค‘์š”ํ•œ ํŠน์„ฑ์„ ๋ˆ„๋ฝํ•˜๊ฑฐ๋‚˜ ์™œ๊ณก๋œ ๊ฒฐ๊ณผ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์ฒ˜๋Ÿผ ๊ธฐ์กด์˜ ๋ถ„์„๋ฒ•๋“ค์€ ์ˆ˜์น˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•˜๊ฑฐ๋‚˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •์ด ์ ์ ˆํ•˜์ง€ ์•Š์„ ๊ฒฝ์šฐ, ๋ถ„์„์˜ ์ •ํ™•๋„๊ฐ€ ์ €ํ•˜๋˜๊ณ  ํ™œ์šฉ์ด ์–ด๋ ต๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค. ์ด์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด ๋ถ„์„๋ฒ•๋“ค์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด 2D CNN(Two-Dimensional Convolutional Neural Network)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ƒˆ๋กœ์šด ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ ๋ฐฉ๋ฒ•์—์„œ๋Š” ๋จผ์ € ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ ์กฐํŒŒ๊ฐ€ ํฌํ•จ๋œ ๋‹ค์–‘ํ•œ ์‹ ํ˜ธ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ํ•™์Šต ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ํ•ด๋‹น ํ•™์Šต ๋ชจ๋ธ์€ ๋ถ„์„ ๋Œ€์ƒ ์‹ ํ˜ธ ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ๋  ๊ฒฝ์šฐ, ์‹ ๊ฒฝ๋ง ํŒจํ„ด ๋ถ„์„๊ณผ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ์ž…๋ ฅ๋œ ์‹ ํ˜ธ์˜ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ถ”์ •ํ•œ๋‹ค. ์ œ์•ˆ ๋ฐฉ๋ฒ•์€ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„ ๊ณผ์ •์—์„œ ์ˆ˜์น˜ ๋ฐ์ดํ„ฐ๋‚˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ • ๋“ฑ์ด ํ•„์š” ์—†๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ์กด ๋ถ„์„๋ฒ•๋“ค๊ณผ ์ฐจ๋ณ„์„ฑ์„ ๊ฐ€์ง„๋‹ค. ์ œ์•ˆ ๋ฐฉ๋ฒ•์˜ ํšจ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด, ๋‹ค์–‘ํ•œ ์‚ฌ๋ก€์— ๋Œ€ํ•ด ์ œ์•ˆ ๋ฐฉ๋ฒ•์˜ ์ถ”์ •๊ฐ’๊ณผ PSCAD/EMTDC์˜ FFT ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค.

2. CNN ๋ฐ 2D CNN์˜ ๊ฐœ์š”

์ผ๋ฐ˜์ ์ธ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ๊ณผ ๋‹ฌ๋ฆฌ, ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์—์„œ ์ˆ˜๋™์ ์ธ ํŠน์ง• ์—”์ง€๋‹ˆ์–ด๋ง(feature engineering)์„ ์š”๊ตฌํ•˜์ง€ ์•Š๊ณ , ํ•™์Šต์„ ํ†ตํ•ด ์ตœ์ ์˜ ํŠน์ง•์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ๊ฐ•์ ์„ ๊ฐ€์ง„๋‹ค[9]. CNN์€ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•œ ์ข…๋ฅ˜๋กœ, ๊ฐ€์ค‘์น˜ ๊ณต์œ ์™€ ๋ถ€๋ถ„ ์—ฐ๊ฒฐ ๋ฐฉ์‹์„ ์ ์šฉํ•˜์—ฌ ํ•™์Šตํ•ด์•ผ ํ•  ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ์ค„์ด๊ณ  ํ•™์Šต ํšจ์œจ์„ ๋†’์ด๋ฉฐ ๊ณผ์ ํ•ฉ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด CNN ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€ ๋ถ„์„๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ฐ์ฒด ํƒ์ง€, ํŒจํ„ด ์ธ์‹, ์ž์œจ ์ฃผํ–‰ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค[10]. CNN ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋ฅผ ๋ณ€ํ˜•ํ•˜์—ฌ 2์ฐจ์› ๊ณต๊ฐ„์—์„œ ์ •์˜๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋„๋ก ์„ค๊ณ„๋œ 2D CNN์€ CNN์˜ ํ•œ ํ˜•ํƒœ๋กœ, ์ฃผ๋กœ ์ด๋ฏธ์ง€ ๋ฐ ์˜์ƒ๊ณผ ๊ฐ™์€ 2D ๋ฐ์ดํ„ฐ ๋ถ„์„์— ์‚ฌ์šฉ๋œ๋‹ค.

2.1 ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ

CNN ๋ฐ 2D CNN์€ ์ž…๋ ฅ์ธต(input layer), ์€๋‹‰์ธต(hidden layer), ์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต(fully connected layer), ์ถœ๋ ฅ์ธต(output layer)์˜ ๋„ค ๊ฐ€์ง€ ์ฃผ์š” ๊ณ„์ธต์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค.

๋จผ์ €, ์ž…๋ ฅ์ธต์€ ๋ชจ๋ธ์ด ์ฒ˜๋ฆฌํ•  ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜์Œ์œผ๋กœ ๋ฐ›์•„๋“ค์ด๋Š” ๋‹จ๊ณ„๋กœ, ์ผ๋ฐ˜์ ์œผ๋กœ ํฌ๊ธฐ์™€ ํ˜•์‹์ด ์ •์˜๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ๋ฐ›์•„ ์ฒ˜๋ฆฌํ•˜๋„๋ก ์„ค๊ณ„๋œ๋‹ค. ์ดํ›„, ํฌ๊ธฐ ์กฐ์ •๊ณผ ์ •๊ทœํ™” ๊ฐ™์€ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์‹ ๊ฒฝ๋ง์— ์ ํ•ฉํ•œ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์€๋‹‰์ธต์— ์ „๋‹ฌํ•œ๋‹ค.

์€๋‹‰์ธต์€ ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต(convolutional layer), ํ™œ์„ฑํ™” ํ•จ์ˆ˜(activation function), ํ’€๋ง ๊ณ„์ธต(pooling layer), ํ‰ํƒ„ํ™” ๊ณ„์ธต(flatten layer)์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๋ฐ์ดํ„ฐ์˜ ์ฃผ์š” ํŠน์ง•์„ ๋‹จ๊ณ„์ ์œผ๋กœ ์ถ”์ถœํ•˜๊ณ  ํ•™์Šตํ•œ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ํ•„ํ„ฐ๋ฅผ ์ ์šฉํ•˜์—ฌ ๊ตญ์†Œ์  ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ  ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ํŠน์ • ํŒจํ„ด์„ ์ ์ง„์ ์œผ๋กœ ํ•™์Šตํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์ด ์ˆ˜ํ–‰๋˜๋ฉฐ, ํ•„ํ„ฐ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ํŠน์ • ์˜์—ญ์—์„œ ์š”์†Œ๋ณ„ ๊ณฑ์…ˆ ๋ฐ ํ•ฉ์‚ฐ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ƒˆ๋กœ์šด ํŠน์ง• ๋งต(feature map)์„ ์ƒ์„ฑํ•œ๋‹ค. ํ•„ํ„ฐ๋Š” ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ(sliding window) ๋ฐฉ์‹์œผ๋กœ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ์œ„๋ฅผ ์ด๋™ํ•˜๋ฉฐ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์„ ๋ฐ˜๋ณต ์ˆ˜ํ–‰ํ•˜๊ณ , ํŠน์ • ํŒจํ„ด์„ ๊ฐ์ง€ ๋ฐ ์ถ”์ถœํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. CNN์—์„œ ์ˆ˜ํ–‰๋˜๋Š” ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์€ ์‹ (1)๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค. ์‹ (1)์—์„œ $X(i,\: j)$๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ํ”ฝ์…€๊ฐ’, $K(m,\: n)$์€ ํ•ฉ์„ฑ๊ณฑ ํ•„ํ„ฐ, $Y(i,\: j)$๋Š” ์ถœ๋ ฅ ํŠน์ง• ๋งต, $M$๊ณผ $N$์€ ํ•ฉ์„ฑ๊ณฑ ํ•„ํ„ฐ์˜ ํ–‰๊ณผ ์—ด์˜ ํฌ๊ธฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.

(1)
$Y(i,\: j)=\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}X(i+m,\: j+n)\bullet K(m,\: n)$

๊ทธ๋ฆผ 1์€ (3, 3) ํฌ๊ธฐ์˜ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์™€ ํ•„ํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ ๊ณผ์ •์„ ์„ค๋ช…ํ•œ ๊ฒƒ์ด๋‹ค.

๊ทธ๋ฆผ 1. ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ ๊ณผ์ •

Fig. 1. Process of convolution operation

../../Resources/kiee/KIEE.2025.74.10.1724/fig1.png

ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ ๊ณผ์ •์„ ๊ฑฐ์ณ ์ถ”์ถœ๋œ ํŠน์ง• ๋งต์— ReLU(Rectified Linear Unit), Sigmoid์™€ ๊ฐ™์€ ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ๋น„์„ ํ˜•์„ฑ์„ ๋„์ž…ํ•˜์—ฌ, ๋‹จ์ˆœํ•œ ์„ ํ˜• ํŒจํ„ด์„ ๋„˜์–ด ๋ณต์žกํ•œ ํŒจํ„ด์„ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ํ’€๋ง ๊ณ„์ธต์€ Max Pooling ๋˜๋Š” Average Pooling ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ํŠน์ง• ๋งต์˜ ํฌ๊ธฐ๋ฅผ ์ถ•์†Œ์‹œ์ผœ ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰๊ณผ ์—ฐ์‚ฐ ๋น„์šฉ์„ ์ค„์ธ๋‹ค. ์ด ๊ณผ์ •์€ ์ค‘์š”ํ•œ ํŠน์ง•์„ ์„ ํƒ์ ์œผ๋กœ ๋ณด์กดํ•จ์œผ๋กœ์จ ํ•™์Šต ์•ˆ์ •์„ฑ์„ ๋†’์ด๊ณ  ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•œ๋‹ค. ํ’€๋ง ๊ณ„์ธต์—์„œ ์ถ•์†Œ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต์— ์ „๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด ํ‰ํƒ„ํ™” ๊ณผ์ •์„ ๊ฑฐ์ณ ๋‹ค์ฐจ์› ๋ฐ์ดํ„ฐ๋ฅผ 1์ฐจ์› ๋ฐ์ดํ„ฐ๋กœ ๋ณ€ํ™˜ํ•œ ๋’ค, ๋ชจ๋“  ๋‰ด๋Ÿฐ์„ ์ด์ „ ๊ณ„์ธต์˜ ๋‰ด๋Ÿฐ๋“ค๊ณผ ์™„์ „ํžˆ ์—ฐ๊ฒฐํ•œ๋‹ค.

์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต์€ ๊ฐ ๋‰ด๋Ÿฐ์ด ๊ฐ€์ค‘์น˜์™€ ํŽธํ–ฅ(bias)์„ ํ•™์Šตํ•˜์—ฌ ๋ฐ์ดํ„ฐ์˜ ํŠน์ง• ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•ฉ์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ์ตœ์ ์˜ ์ถœ๋ ฅ๊ฐ’์„ ์ƒ์„ฑํ•œ๋‹ค. ๋˜ํ•œ, Dropout ๊ณ„์ธต์„ ์ถ”๊ฐ€ํ•˜์—ฌ ์ผ๋ถ€ ๋‰ด๋Ÿฐ์„ ํ•™์Šต ๊ณผ์ •์—์„œ ์ž„์‹œ๋กœ ๋น„ํ™œ์„ฑํ™” ์‹œํ‚ด์œผ๋กœ์จ, ๊ณผ์ ํ•ฉ ๋ฐฉ์ง€ ๋ฐ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ, ์ถœ๋ ฅ์ธต์€ ํ•™์Šต๋œ ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ตœ์ข… ์˜ˆ์ธก๊ฐ’์„ ์ƒ์„ฑํ•˜๋Š” ๋‹จ๊ณ„๋กœ, ๋ชจ๋ธ์˜ ๋ชฉ์ ์— ๋”ฐ๋ผ ๊ตฌ์„ฑ๊ณผ ํ™œ์„ฑํ™” ํ•จ์ˆ˜๊ฐ€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ถ„๋ฅ˜ ๋ฌธ์ œ์˜ ๊ฒฝ์šฐ ์ถœ๋ ฅ์ธต์€ ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ๋ฐ˜ํ™˜ํ•˜๋ฉฐ, ํšŒ๊ท€ ๋ฌธ์ œ์—์„œ๋Š” ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ฑฐ๋‚˜ ์„ ํ˜• ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜์—ฌ ์—ฐ์†์ ์ธ ๊ฐ’์„ ์ถœ๋ ฅํ•˜๋„๋ก ์„ค๊ณ„๋œ๋‹ค[11]. ์ถœ๋ ฅ์ธต์˜ ๋‰ด๋Ÿฐ ์ˆ˜๋Š” ๋ชจ๋ธ์ด ์˜ˆ์ธกํ•˜๋ ค๋Š” ๊ฐ’์˜ ๊ฐœ์ˆ˜์™€ ์ผ์น˜ํ•˜๋ฉฐ, ์ด ๋‹จ๊ณ„์—์„œ ๋ชจ๋ธ์˜ ๋ชจ๋“  ํ•™์Šต์ด ์ง‘์•ฝ๋œ ์ตœ์ข… ๊ฒฐ๊ณผ๊ฐ€ ๋„์ถœ๋œ๋‹ค.

2.2 ํ•™์Šต ๊ณผ์ •

CNN ๋ฐ 2D CNN์€ ์ž…๋ ฅ๋œ ๋ฐ์ดํ„ฐ์˜ ํŠน์ง•์„ ํ•™์Šตํ•˜๊ณ , ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ จ์˜ ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค[12-13]. ๋จผ์ €, ์ „๋ฐฉ ์ „ํŒŒ(forward propagation)๋ฅผ ํ†ตํ•ด ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณ„์ธต์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์—ฌ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์˜ˆ์ธก๊ฐ’์„ ์ƒ์„ฑํ•œ๋‹ค. ์ด์–ด์„œ ์†์‹ค ํ•จ์ˆ˜(loss function)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹ค์ œ๊ฐ’๊ณผ ์˜ˆ์ธก๊ฐ’์˜ ์ฐจ์ด๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ๊ฐ€์ค‘์น˜๋ฅผ ์กฐ์ •ํ•˜๋ฉฐ ๋ชจ๋ธ์˜ ํ•™์Šต์„ ์ง„ํ–‰ํ•œ๋‹ค. ๋ชจ๋ธ์€ ์—ํฌํฌ(epoch) ๋‹จ์œ„๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๋ฉฐ, 1์—ํฌํฌ๋Š” ์ „์ฒด ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹์„ ํ•œ ๋ฒˆ ํ•™์Šตํ•˜๋Š” ๊ณผ์ •์„ ์˜๋ฏธํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์—ญ์ „ํŒŒ(backpropagation) ๊ณผ์ •์—์„œ๋Š” ์†์‹ค ํ•จ์ˆ˜๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐ๋œ ๊ธฐ์šธ๊ธฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ€์ค‘์น˜๋ฅผ ์—…๋ฐ์ดํŠธํ•˜๋ฉฐ, ์ด๋ฅผ ๋ฐ˜๋ณตํ•˜์—ฌ ๋ชจ๋ธ์„ ์ตœ์ ํ™”ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ผ๋ จ์˜ ๊ณผ์ •์„ ํ†ตํ•ด ๋ชจ๋ธ์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ์‹œ๊ฐ์  ํŒจํ„ด์„ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค.

3. 2D CNN ๊ธฐ๋ฐ˜ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„ ๋ฐฉ๋ฒ•

๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ 2D CNN ๊ธฐ๋ฐ˜์˜ ํšŒ๊ท€ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. CNN ๋ฐ 2D CNN์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ํŠน์ง•์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์‹œ๊ฐ„ ๋ฐ ์ง„ํญ ๋ฐ์ดํ„ฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๊ณ  ์ค‘์š”ํ•œ ํŒจํ„ด์„ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๋น„์„ ํ˜• ํ™œ์„ฑํ™” ํ•จ์ˆ˜์™€ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์„ ํ™œ์šฉํ•˜์—ฌ ๊ณ ์กฐํŒŒ ๊ฐ„์˜ ๋น„์„ ํ˜•์  ์ƒํ˜ธ์ž‘์šฉ๊ณผ ๊ฐ™์€ ๋ณต์žกํ•œ ํŒจํ„ด์„ ๋ถ„์„ํ•˜๋Š” ๋ฐ ์ ํ•ฉํ•˜๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•(data augmentation) ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ๊ณผ ํ•™์Šต ์•ˆ์ •์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค[14]. ๋”ฐ๋ผ์„œ, 2D CNN ๊ธฐ๋ฐ˜์˜ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„๋ฒ•์€ ์ „ํ†ต์ ์ธ ๋ถ„์„๋ฒ•๋“ค๊ณผ ๋‹ฌ๋ฆฌ ๋ณต์žกํ•œ ์ˆ˜์น˜ ๋ฐ์ดํ„ฐ๋‚˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ • ์—†์ด ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ ์ด๋ฏธ์ง€๋งŒ์œผ๋กœ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ ๋ชจ๋ธ์€ ํ•™์Šต ๊ณผ์ •์—์„œ ๊ณ ์กฐํŒŒ๊ฐ€ ํฌํ•จ๋œ ์‹ ํ˜ธ๋ฅผ ์ด๋ฏธ์ง€ ํ˜•ํƒœ๋กœ ์ž…๋ ฅ๋ฐ›์•„ ์‹œ๊ฐ์  ํŒจํ„ด์„ ํ•™์Šตํ•œ๋‹ค. ํ•™์Šต์ด ์™„๋ฃŒ๋œ ๋ชจ๋ธ์€ ์ž…๋ ฅ๋œ ๋ถ„์„ ๋Œ€์ƒ ์‹ ํ˜ธ ์ด๋ฏธ์ง€์˜ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ „์ฒด์ ์ธ ๋ชจ๋ธ ํ•™์Šต ๊ณผ์ •์€ ๊ทธ๋ฆผ 2์™€ ๊ฐ™๋‹ค.

๊ทธ๋ฆผ 2. ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์„ ์œ„ํ•œ 2D CNN ๋ชจ๋ธ ํ•™์Šต ์ˆœ์„œ๋„

Fig. 2. The training flowchart of the 2D CNN model for harmonic spectrum analysis

../../Resources/kiee/KIEE.2025.74.10.1724/fig2.png

3.1 ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์ž…๋ ฅ ๋ฐ ์ „์ฒ˜๋ฆฌ

2D CNN ๊ธฐ๋ฐ˜์˜ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„ ๋ชจ๋ธ์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด ์‹ (2)์™€ ๊ฐ™์ด ๊ธฐ๋ณธํŒŒ์™€ ๊ณ ์กฐํŒŒ๊ฐ€ ์กฐํ•ฉ๋œ ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์‹ (2)์—์„œ $A$๋Š” ์ง„ํญ, $w$๋Š” ๊ฐ์ฃผํŒŒ์ˆ˜, $\Phi$๋Š” ์œ„์ƒ์„ ์˜๋ฏธํ•œ๋‹ค.

(2)
$s(t)=A_{1}\sin wt+\sum_{k=2}^{n}A_{k}\sin(kwt+\Phi_{k})$

๋ชจ๋ธ์˜ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ง„ํญ, ๊ฐ์ฃผํŒŒ์ˆ˜, ์œ„์ƒ์„ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ๋‹ค์–‘ํ•œ ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•œ ํ›„, 2D CNN ๋ชจ๋ธ์ด ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ฏธ์ง€ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ํ™œ์šฉํ•œ๋‹ค. ์ž…๋ ฅ๋˜๋Š” ์ด๋ฏธ์ง€์˜ ํ•ด์ƒ๋„๋Š” ๋†’์„์ˆ˜๋ก ์„ธ๋ฐ€ํ•œ ํŠน์ง•๊นŒ์ง€ ํฌํ•จํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ์—ฐ์‚ฐ ๋น„์šฉ๊ณผ ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋ถˆํ•„์š”ํ•œ ์ •๋ณด๊นŒ์ง€ ํฌํ•จํ•˜์—ฌ ๊ณผ์ ํ•ฉ์„ ์œ ๋ฐœํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ํŠน์ • ๋ฌธ์ œ ์ƒํ™ฉ๊ณผ ํ•˜๋“œ์›จ์–ด ์„ฑ๋Šฅ์„ ๊ณ ๋ คํ•˜์—ฌ ์ ์ ˆํ•œ ํ•ด์ƒ๋„๋ฅผ ์„ค์ •ํ•ด์•ผ ํ•œ๋‹ค. ๋˜ํ•œ, ํ•™์Šต์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ์…‹ ํฌ๊ธฐ๋Š” ๋ชจ๋ธ ์„ฑ๋Šฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์†Œ ์ค‘ ํ•˜๋‚˜๋กœ, ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐ์ดํ„ฐ๊ฐ€ ๋งŽ์•„์ง€๋ฉด ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ผ์ • ์ˆ˜์ค€ ์ด์ƒ์—์„œ๋Š” ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ๋‘”ํ™”๋˜๊ฑฐ๋‚˜ ํฌํ™”๋˜๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ฐ์ดํ„ฐ๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ ๋งŽ์„ ๊ฒฝ์šฐ ํ•™์Šต ์‹œ๊ฐ„๊ณผ ๊ณ„์‚ฐ ๋น„์šฉ์ด ์ฆ๊ฐ€ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ์ €ํ•˜๋  ๊ฐ€๋Šฅ์„ฑ๋„ ์žˆ๋‹ค[15]. ์ด์— ๋”ฐ๋ผ, ๋ฌธ์ œ ์ƒํ™ฉ ๋ฐ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์— ์ ํ•ฉํ•œ ๋ฐ์ดํ„ฐ์…‹ ํฌ๊ธฐ๋ฅผ ์„ ์ •ํ•˜์—ฌ ๋ชจ๋ธ ํ•™์Šต์— ํ™œ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์ž…๋ ฅ๋œ ๋ฐ์ดํ„ฐ๋Š” ๋ชจ๋ธ ํ•™์Šต ์ „์— ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ๊ฑฐ์ณ ์ •๊ทœํ™”๋˜๋ฉฐ, ๋ฐ์ดํ„ฐ์˜ ์Šค์ผ€์ผ ์ฐจ์ด๋ฅผ ์ค„์ด๊ณ  ํ•™์Šต ์•ˆ์ •์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด 0~1 ๋ฒ”์œ„๋กœ ๋ณ€ํ™˜๋œ๋‹ค. ์ •๊ทœํ™”๋œ ๋ฐ์ดํ„ฐ๋Š” ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ์™€ ๊ฒ€์ฆ์šฉ ๋ฐ์ดํ„ฐ๋กœ ๋ถ„๋ฆฌ๋˜๋Š” ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. ํ•™์Šต ๋ฐ์ดํ„ฐ๋Š” 2D CNN ๋ชจ๋ธ ํ›ˆ๋ จ์— ํ™œ์šฉ๋˜๊ณ , ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋Š” ํ•™์Šต ๊ณผ์ •์—์„œ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ๊ณผ์ ํ•ฉ ์—ฌ๋ถ€๋ฅผ ํ™•์ธํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋œ๋‹ค.

3.2 ๋ชจ๋ธ ๊ตฌ์กฐ ์„ค๊ณ„ ๋ฐ ํ•™์Šต

๊ทธ๋ฆผ 3์€ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์— ์‚ฌ์šฉ๋˜๋Š” 2D CNN ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค.

๊ทธ๋ฆผ 3. ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์— ์‚ฌ์šฉ๋˜๋Š” 2D CNN ๊ตฌ์กฐ

Fig. 3. 2D CNN architecture used for harmonic spectrum analysis

../../Resources/kiee/KIEE.2025.74.10.1724/fig3.png

์ž…๋ ฅ์ธต์—์„œ๋Š” ๊ณ ์กฐํŒŒ๊ฐ€ ํฌํ•จ๋œ ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฅผ ์ด๋ฏธ์ง€ ํ˜•ํƒœ๋กœ ์ž…๋ ฅ๋ฐ›์•„ ์ „์ฒ˜๋ฆฌ ํ›„, ์€๋‹‰์ธต์œผ๋กœ ์ „๋‹ฌํ•œ๋‹ค. ์€๋‹‰์ธต์˜ ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต์€ ํŠน์ • ๋ฌธ์ œ ์ˆ˜์ค€์— ๋”ฐ๋ผ ์‚ฌ์šฉ๋  ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต์˜ ๊ฐœ์ˆ˜์™€ ํ•ฉ์„ฑ๊ณฑ ํ•„ํ„ฐ์˜ ๊ฐœ์ˆ˜ ๋ฐ ํฌ๊ธฐ๊ฐ€ ๊ฒฐ์ •๋œ๋‹ค. ๊ฐ ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต์—๋Š” ํ™œ์„ฑํ™” ํ•จ์ˆ˜๊ฐ€ ์ถ”๊ฐ€๋˜์–ด ๋น„์„ ํ˜•์„ฑ์„ ๋„์ž…ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์ด ๊ณ ์กฐํŒŒ ์ด๋ฏธ์ง€์˜ ๋ณต์žกํ•œ ํŒจํ„ด์„ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ์ดํ›„, ๋ฐ์ดํ„ฐ์˜ ๊ณต๊ฐ„์  ํฌ๊ธฐ๋ฅผ ์ถ•์†Œํ•˜๊ณ  ์—ฐ์‚ฐ ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ํ’€๋ง ๊ณ„์ธต์ด ๋ฐฐ์น˜๋˜๋ฉฐ, ํ‰ํƒ„ํ™” ๊ณผ์ •์„ ๊ฑฐ์นœ ํ›„, ์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต์— ๋ฐ์ดํ„ฐ๊ฐ€ ์ „๋‹ฌ๋œ๋‹ค. ์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต์€ ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜์—ฌ ๊ณ ์กฐํŒŒ ์ด๋ฏธ์ง€์˜ ๋น„์„ ํ˜•์  ํŒจํ„ด์„ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, Dropout ๊ณ„์ธต์„ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ถœ๋ ฅ์ธต์€ ๋ชจ๋ธ์ด ์ถ”์ •ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ณ ์กฐํŒŒ ์ˆ˜์— ๋งž์ถ”์–ด ๋‰ด๋Ÿฐ์„ ๊ตฌ์„ฑํ•˜๊ณ , ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ์ถ”์ •๊ณผ ๊ฐ™์€ ํšŒ๊ท€ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ์ ํ•ฉํ•˜๋„๋ก ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ์ƒ๋žตํ•œ๋‹ค.

๋ชจ๋ธ ๊ตฌ์กฐ ์„ค๊ณ„๊ฐ€ ์™„๋ฃŒ๋˜๋ฉด, ๋ฐ์ดํ„ฐ์…‹ ํฌ๊ธฐ์™€ ๋ชจ๋ธ ๋ณต์žก๋„์— ๋”ฐ๋ผ ์ ์ • ์—ํฌํฌ๋ฅผ ์„ ์ •ํ•˜์—ฌ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๊ณ , ์†์‹ค ํ•จ์ˆ˜์™€ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ๊ฐ ์—ํฌํฌ๋งˆ๋‹ค ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ๋˜ํ•œ, ํ•™์Šต ๊ณผ์ •์—์„œ EarlyStopping์„ ํ†ตํ•ด ์„ค์ •๋œ ๊ด€์ฐฐ ํšŸ์ˆ˜ ๋™์•ˆ ๊ฒ€์ฆ ์†์‹ค์ด ๊ฐœ์„ ๋˜์ง€ ์•Š์„ ๊ฒฝ์šฐ ํ•™์Šต์„ ์กฐ๊ธฐ ์ข…๋ฃŒํ•˜๋„๋ก ์„ค์ •ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ถˆํ•„์š”ํ•œ ํ•™์Šต ๋ฐ ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„๊ณผ ๊ฐ™์€ ํšŒ๊ท€ ๋ฌธ์ œ์—์„œ๋Š” ์†์‹ค ํ•จ์ˆ˜๋กœ MSE(Mean Squared Error)๊ฐ€ ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋ฉฐ, ๋ชจ๋ธ ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด MAE(Mean Absolute Error)๋ฅผ ์ถ”๊ฐ€์ ์ธ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•™์Šต์ด ์™„๋ฃŒ๋œ ํ›„, ๋ชจ๋ธ ์„ค๊ณ„ ๊ณผ์ •์—์„œ ์‚ฌ์šฉ๋˜์ง€ ์•Š์€ ์ƒˆ๋กœ์šด ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜์—ฌ, ํ•™์Šต ๋ชจ๋ธ์ด ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ •ํ™•ํžˆ ์ถ”์ •ํ•˜๋Š”์ง€๋ฅผ ํ‰๊ฐ€ํ•˜๊ฒŒ ๋œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ์ˆ˜ํ–‰๋œ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„ ๊ณผ์ •์€ ๊ทธ๋ฆผ 4์™€ ๊ฐ™๋‹ค.

๊ทธ๋ฆผ 4. ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„ ๊ณผ์ •

Fig. 4. The procedure of harmonic spectrum analysis

../../Resources/kiee/KIEE.2025.74.10.1724/fig4.png

4. ์‚ฌ๋ก€ ์—ฐ๊ตฌ ๋ฐ ๊ฒฐ๊ณผ ๋ถ„์„

์ œ์•ˆ ๋ฐฉ๋ฒ•์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด, ๋‹ค์–‘ํ•œ ์ฐจ์ˆ˜์˜ ๊ณ ์กฐํŒŒ๊ฐ€ ํฌํ•จ๋œ ์‹ ํ˜ธ์— ๋Œ€ํ•œ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ธฐ๋ณธํŒŒ์™€ 3์ฐจ, 5์ฐจ, 7์ฐจ ๊ณ ์กฐํŒŒ๊ฐ€ ์กฐํ•ฉ๋œ ์‹ ํ˜ธ์— ๋Œ€ํ•ด ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„ ๋ชจ๋ธ์„ ์„ค๊ณ„ํ•˜๊ณ , ๋‹ค์–‘ํ•œ Case๋ฅผ ํ†ตํ•ด ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 5์™€ ๊ฐ™์€ PSCAD/EMTDC ๊ณ„ํ†ต์—์„œ ์ธก์ • ๊ฐœ์†Œ์˜ ์ถœ๋ ฅ๊ฐ’ Ea์— ๋Œ€ํ•ด FFT๋ฅผ ์ˆ˜ํ–‰ํ•œ ๊ฒฐ๊ณผ์™€ ์ œ์•ˆ ๋ฐฉ๋ฒ•์˜ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 5์˜ ๊ณ„ํ†ต์€ ๋‹จ์ƒ 220 $V_{r m s}$, 60 Hz์˜ ์ „์› ๋ชจ๋ธ๊ณผ 3์ฐจ, 5์ฐจ, 7์ฐจ ๊ณ ์กฐํŒŒ ์ „์••์› ๋ชจ๋ธ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 5. PSCAD/EMTDC ๋ชจ์˜ ๊ณ„ํ†ต

Fig. 5. PSCAD/EMTDC test system

../../Resources/kiee/KIEE.2025.74.10.1724/fig5.png

4.1 ํ•™์Šต ๋ฐ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ

Python์„ ํ™œ์šฉํ•˜์—ฌ ๋ชจ๋ธ ํ•™์Šต์— ํ•„์š”ํ•œ ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ๋Š” 60 Hz์˜ ๊ธฐ๋ณธํŒŒ์™€ 3์ฐจ, 5์ฐจ, 7์ฐจ ๊ณ ์กฐํŒŒ๋ฅผ ์กฐํ•ฉํ•˜์˜€๊ณ , ๊ธฐ๋ณธํŒŒ์˜ ์ง„ํญ์€ 1.000 $V_{r m s}$, ๊ฐ ๊ณ ์กฐํŒŒ์˜ ์ง„ํญ์€ 0.050~1.000 $V_{r m s}$ ๋ฒ”์œ„์˜ ๋žœ๋คํ•œ ๊ฐ’์œผ๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์‹ ํ˜ธ ๊ฐ„์˜ ์œ„์ƒ์ฐจ๋Š” ๊ณ ๋ คํ•˜์ง€ ์•Š์•˜๋‹ค. ์ƒ๊ธฐ ๊ณผ์ •์„ ํ†ตํ•ด ์ƒ์„ฑ๋œ ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ๋Š” ์‹ (3)๊ณผ ๊ฐ™๋‹ค.

(3)
$s(t)=\sum_{k=1}^{4}A_{2k-1}\sin(2k-1)wt$

๋ชจ๋ธ ํ•™์Šต์„ ์œ„ํ•ด, ํ‘œ 1๊ณผ ๊ฐ™์ด ๊ฐ ๊ณ ์กฐํŒŒ ์กฐํ•ฉ๋ณ„๋กœ 2,000~5,000๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ์ด 20,000๊ฐœ์˜ ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋Š” ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ 80%, ๊ฒ€์ฆ์šฉ ๋ฐ์ดํ„ฐ 20%๋กœ ๋ถ„๋ฆฌ๋˜์—ˆ์œผ๋ฉฐ, ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ๋Š” 2D CNN ๋ชจ๋ธ์˜ ํ•™์Šต์— ํ™œ์šฉ๋˜์—ˆ๊ณ , ๊ฒ€์ฆ์šฉ ๋ฐ์ดํ„ฐ๋Š” ํ•™์Šต ๊ณผ์ •์—์„œ ์‚ฌ์šฉ๋˜์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ๋ชจ๋ธ ์„ฑ๋Šฅ ํ‰๊ฐ€์— ํ™œ์šฉํ•˜์˜€๋‹ค.

ํ‘œ 1 ๊ณ ์กฐํŒŒ ์กฐํ•ฉ๋ณ„ ๋ฐ์ดํ„ฐ ์ˆ˜

Table 1 Data size for each harmonic combination

์กฐํ•ฉ ์‹ ํ˜ธ

๋ฐ์ดํ„ฐ ์ˆ˜

ํ•™์Šต์šฉ

๊ฒ€์ฆ์šฉ

๊ธฐ๋ณธํŒŒ + 3์ฐจ

2,000

1,600

400

๊ธฐ๋ณธํŒŒ + 5์ฐจ

2,000

1,600

400

๊ธฐ๋ณธํŒŒ + 7์ฐจ

2,000

1,600

400

๊ธฐ๋ณธํŒŒ + 3, 5์ฐจ

3,000

2,400

600

๊ธฐ๋ณธํŒŒ + 3, 7์ฐจ

3,000

2,400

600

๊ธฐ๋ณธํŒŒ + 5, 7์ฐจ

3,000

2,400

600

๊ธฐ๋ณธํŒŒ + 3, 5, 7์ฐจ

5,000

4,000

1,000

4.2 2D CNN ๋ชจ๋ธ ์„ค๊ณ„ ๋ฐ ํ•™์Šต

๊ณ ์กฐํŒŒ ์‹ ํ˜ธ ์ด๋ฏธ์ง€๋ฅผ ํ•™์Šต์‹œํ‚ฌ 2D CNN ๋ชจ๋ธ์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด, 4.1์ ˆ์—์„œ ์ƒ์„ฑํ•œ ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋ธ์ด ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋กœ ๋ณ€ํ™˜ํ•˜์˜€๋‹ค. ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋Š” 500ร—300ร—3 ํฌ๊ธฐ๋กœ ๋ณ€ํ™˜๋œ ํ›„ ์ž…๋ ฅ์ธต์— ์ „๋‹ฌ๋˜์—ˆ์œผ๋ฉฐ, ์ž…๋ ฅ์ธต์—์„œ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ๊ฑฐ์ณ ์€๋‹‰์ธต์œผ๋กœ ์ „๋‹ฌ๋˜์—ˆ๋‹ค. ์€๋‹‰์ธต์˜ ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต์€ ๋ฐ์ดํ„ฐ์˜ ๋ณต์žก๋„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ด 3๊ฐœ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๊ณ , ๊ฐ ๊ณ„์ธต์— ReLU ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜์—ฌ ๋น„์„ ํ˜•์„ฑ์„ ๋„์ž…ํ•˜์˜€๋‹ค. ํ•ฉ์„ฑ๊ณฑ ํ•„ํ„ฐ์˜ ํฌ๊ธฐ๋Š” 3ร—3์œผ๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ๊ณ„์ธต๋ณ„๋กœ 32, 64, 128๊ฐœ์˜ ํ•„ํ„ฐ๋ฅผ ์ ์šฉํ•˜์—ฌ ์ž…๋ ฅ๋œ ๋ฐ์ดํ„ฐ์˜ ํŠน์ง•์„ ์ ์ง„์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๊ฐ ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต ๋’ค์—๋Š” 2ร—2 ํฌ๊ธฐ์˜ Maxpooling ๊ณ„์ธต์„ ๋ฐฐ์น˜ํ•˜์˜€๊ณ , ํ‰ํƒ„ํ™” ๊ณ„์ธต์„ ํ†ตํ•ด ๋‹ค์ฐจ์› ๋ฐ์ดํ„ฐ๋ฅผ 1์ฐจ์› ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต์— ์ „๋‹ฌํ•˜์˜€๋‹ค. ์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต์€ 128๊ฐœ์˜ ๋‰ด๋Ÿฐ์œผ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ์œผ๋ฉฐ, ReLU ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋น„์„ ํ˜•์  ํŒจํ„ด์„ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ณผ์ ํ•ฉ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•ด Dropout ๊ณ„์ธต์„ ์ถ”๊ฐ€ํ•˜์—ฌ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ณธ ์‚ฌ๋ก€ ์—ฐ๊ตฌ์—์„œ๋Š” 3์ฐจ, 5์ฐจ, 7์ฐจ ๊ณ ์กฐํŒŒ๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ถœ๋ ฅ์ธต์— 3๊ฐœ์˜ ๋‰ด๋Ÿฐ์„ ๋ฐฐ์น˜ํ•˜์˜€์œผ๋ฉฐ, ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋Š” ์ ์šฉํ•˜์ง€ ์•Š์•˜๋‹ค.

๋ชจ๋ธ ๊ตฌ์กฐ๋ฅผ ๊ตฌ์„ฑํ•œ ํ›„, ๋ฐ์ดํ„ฐ์…‹ ํฌ๊ธฐ์™€ ๋ชจ๋ธ ๋ณต์žก๋„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ 20์—ํฌํฌ ๋™์•ˆ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ฐ ์—ํฌํฌ๋งˆ๋‹ค MSE๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์†์‹ค์„ ๊ณ„์‚ฐํ•˜์—ฌ ๋ชจ๋ธ์„ ์ตœ์ ํ™”ํ•˜์˜€๊ณ , MAE๋ฅผ ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ ํ™œ์šฉํ•˜์—ฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ด€์ฐฐ ํšŸ์ˆ˜๋ฅผ 3์œผ๋กœ ์„ค์ •ํ•˜์—ฌ ๊ฒ€์ฆ ์†์‹ค์ด 3์—ํฌํฌ ์ด์ƒ ๊ฐœ์„ ๋˜์ง€ ์•Š์„ ๊ฒฝ์šฐ, EarlyStopping์„ ํ†ตํ•ด ํ•™์Šต ์‹œ๊ฐ„์„ ์ ˆ์•ฝํ•˜๊ณ  ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋ชจ๋ธ ํ•™์Šต ๊ณผ์ •์—์„œ ๊ทธ๋ฆผ 6์— ์ œ์‹œ๋œ ํ›ˆ๋ จ ์†์‹ค ๋ฐ ๊ฒ€์ฆ ์†์‹ค์ด ์ธก์ •๋˜์—ˆ๋‹ค. ๊ฒ€์ฆ ์†์‹ค์€ 10์—ํฌํฌ๋ถ€ํ„ฐ ๊ฐœ์„ ๋˜์ง€ ์•Š์•˜์œผ๋ฉฐ, ์ด์— ๋”ฐ๋ผ EarlyStopping์ด ์ ์šฉ๋˜์–ด 12์—ํฌํฌ์—์„œ ๋ชจ๋ธ ํ•™์Šต์ด ์ข…๋ฃŒ๋˜์—ˆ๋‹ค. ์ตœ์ข… ํ•™์Šต ๋ชจ๋ธ์€ ๊ฒ€์ฆ ์†์‹ค ๊ธฐ์ค€ MSE 0.0037์„ ๊ธฐ๋กํ•˜์—ฌ, ํ•™์Šต ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์•ˆ์ •์ ์ธ ์ˆ˜๋ ด ํŠน์„ฑ์„ ๋ณด์ž„๊ณผ ๋™์‹œ์— ์ถฉ๋ถ„ํžˆ ๋‚ฎ์€ ์ถ”์ • ์˜ค์ฐจ๋ฅผ ํ™•๋ณดํ•˜์˜€์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 6. ๋ชจ๋ธ ํ•™์Šต ๊ณผ์ •์—์„œ ํ›ˆ๋ จ ์†์‹ค ๋ฐ ๊ฒ€์ฆ ์†์‹ค

Fig. 6. Training and validation losses during model training

../../Resources/kiee/KIEE.2025.74.10.1724/fig6.png

4.3 ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„ ๊ฒฐ๊ณผ ๋น„๊ต

๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์„ ์œ„ํ•ด ํ‘œ 2์— ์ œ์‹œ๋œ Case 1~4์— ํ•ด๋‹นํ•˜๋Š” ์ƒˆ๋กœ์šด ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜์˜€์œผ๋ฉฐ, ํ•ด๋‹น ์‹ ํ˜ธ์˜ ํŒŒํ˜•์€ ๊ทธ๋ฆผ 7๊ณผ ๊ฐ™๋‹ค. ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ํ›„, ์„ค๊ณ„๋œ 2D CNN ๋ชจ๋ธ์— ์ž…๋ ฅํ•˜์—ฌ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. Case 1~4์— ์‚ฌ์šฉ๋œ ๊ธฐ๋ณธํŒŒ์˜ ์ง„ํญ์€ 220 $V_{r m s}$๋กœ ์„ค์ •ํ•˜์˜€๊ณ , ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ์˜ THD(Total Harmonic Distortion)๋Š” ๊ฐ๊ฐ 5%, 8%, 12%, 15%๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ, ๊ฐ Case ์‹ ํ˜ธ์— ๋Œ€ํ•œ ๋ชจ๋ธ์˜ ์ถ”์ •๊ฐ’๊ณผ PSCAD/EMTDC์˜ FFT ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•จ์œผ๋กœ์จ ๊ทธ ์ •ํ™•๋„๋ฅผ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

๊ฐ Case์— ๋Œ€ํ•œ ํ•™์Šต ๋ชจ๋ธ์˜ ์ถ”์ •๊ฐ’๊ณผ PSCAD/EMTDC์˜ FFT ๊ฒฐ๊ณผ๋Š” ํ‘œ 3๊ณผ ๊ฐ™๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, ์ œ์•ˆ ๋ฐฉ๋ฒ•์˜ ์ถ”์ •๊ฐ’๊ณผ PSCAD/EMTDC์˜ FFT ๊ฒฐ๊ณผ ๊ฐ„ ์ƒ๋Œ€ ์˜ค์ฐจ๊ฐ€ ์•ฝ 0.81% ์ดํ•˜์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ์‹ ํ˜ธ์˜ ์ •ํ™•ํ•œ ์ˆ˜์น˜ ๋ฐ์ดํ„ฐ ํ™•์ธ์ด ์–ด๋ ต๊ฑฐ๋‚˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •์ด ์ œํ•œ๋˜์–ด ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ์—๋„, ์ œ์•ˆ ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•˜๋ฉด ์‹ ํ˜ธ ์ด๋ฏธ์ง€๋งŒ์œผ๋กœ ๋‹ค์–‘ํ•œ ์ฐจ์ˆ˜์˜ ๊ณ ์กฐํŒŒ๊ฐ€ ํฌํ•จ๋œ ์‹ ํ˜ธ์— ๋Œ€ํ•œ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์ด ๊ฐ€๋Šฅํ•จ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

ํ‘œ 2 ๋ชจ๋ธ ์„ฑ๋Šฅ ํ‰๊ฐ€์— ํ™œ์šฉ๋œ Case๋ณ„ ๊ณ ์กฐํŒŒ ์ฐจ์ˆ˜์™€ ์ง„ํญ

Table 2 Harmonic order and amplitude for each case used in model performance evaluation

Case

THD

[%]

์ง„ํญ ($V_{r m s}$ ) [V]

3์ฐจ ๊ณ ์กฐํŒŒ

5์ฐจ ๊ณ ์กฐํŒŒ

7์ฐจ ๊ณ ์กฐํŒŒ

Case 1

5

0.00

11.00

0.00

Case 2

8

12.32

0.00

12.32

Case 3

12

0.00

20.24

16.94

Case 4

15

10.56

16.06

26.62

๊ทธ๋ฆผ 7. Case๋ณ„ ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ ํŒŒํ˜•

Fig. 7. Harmonic signal waveforms for each case

../../Resources/kiee/KIEE.2025.74.10.1724/fig7.png

ํ‘œ 3 Case 1~4์— ๋Œ€ํ•œ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„ ๊ฒฐ๊ณผ ๋น„๊ต

Table 3 Comparison of harmonic spectrum analysis results for cases 1 to 4

Case

๊ณ ์กฐํŒŒ ์ฐจ์ˆ˜

์ง„ํญ ( $V_{r m s}$) [V]

์ƒ๋Œ€ ์˜ค์ฐจ

PSCAD/EMTDC

์ œ์•ˆ ๋ฐฉ๋ฒ•

Case 1

5์ฐจ

11.00

11.02

0.18%

Case 2

3์ฐจ

12.32

12.27

0.41%

7์ฐจ

12.32

12.22

0.81%

Case 3

5์ฐจ

20.24

20.15

0.44%

7์ฐจ

16.94

16.83

0.65%

Case 4

3์ฐจ

10.56

10.62

0.57%

5์ฐจ

16.06

16.18

0.75%

7์ฐจ

26.62

26.43

0.71%

5. ๊ฒฐ ๋ก 

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 2D CNN ๊ธฐ๋ฐ˜์˜ ํšŒ๊ท€ ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ์ƒˆ๋กœ์šด ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ๋‹ค์–‘ํ•œ ๊ณ ์กฐํŒŒ ์‹ ํ˜ธ์— ๋Œ€ํ•œ ์‚ฌ์ „ ํ•™์Šต์„ ํ†ตํ•ด, ์‹ ํ˜ธ ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ ๊ณ ์กฐํŒŒ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „์•• ๋ฐ ์ „๋ฅ˜์˜ ์ˆ˜์น˜ ๋ฐ์ดํ„ฐ๋‚˜ ํŠน์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ • ์—†์ด๋„ ๋ถ„์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์ ์€ ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋šœ๋ ทํ•œ ์ฐจ๋ณ„์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด์˜ ์ „ํ†ต์ ์ธ ๋ถ„์„ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฒฝ์šฐ๋‚˜ ์‹ ํ˜ธ์˜ ํŒŒํ˜• ์ด๋ฏธ์ง€๋งŒ ์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ์—๋„ ๋ถ„์„์ด ๊ฐ€๋Šฅํ•˜์—ฌ, ์‹ ํ˜ธ ํ•ด์„์˜ ํŽธ์˜์„ฑ๊ณผ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๋”์šฑ ๋‹ค์–‘ํ•œ ๊ณ ์กฐํŒŒ ์กฐํ•ฉ๊ณผ ๋…ธ์ด์ฆˆ๊ฐ€ ํฌํ•จ๋œ ์‹ค์ธก ์‹ ํ˜ธ๋“ค์— ๋Œ€ํ•ด ํ•™์Šต ๋ฐ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•  ๊ณ„ํš์ด๋‹ค.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1F1A1063668).

References

1 
IEEE, โ€œIEEE Standard for Harmonic Control in Electric Power Systems,โ€ in IEEE Std 519-2022 (Revision of IEEE Std 519-2014), pp. 1-31, 5 Aug. 2022.URL
2 
H. Wang, Y. Li, H. Liu, L. Wu and Y. Sun, โ€œTransmission characteristics of harmonics and negative sequence components of electrified railway in power system,โ€ 2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), pp. 301-306, 2016.DOI
3 
X. Xu, C. Guo, K. Ma, L. Yang, Y. Li and W. Jiang, โ€œInfluence of Harmonics on Each Converter Station in Multi-HVDC System,โ€ 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1-5, 2018.DOI
4 
Sabir Rustemli, Mehmet Ali Satici, Gรถkhan ลžahin, Wilfried van Sark, โ€œInvestigation of harmonics analysis power system due to non-linear loads on the electrical energy quality results,โ€ Energy Reports, vol. 10, pp. 4704-4732, 2023.URL
5 
M. C. Pereyra, L. A. Ward, โ€œHarmonic Analysis: From Fourier to Wavelets,โ€ American Mathematical Society, vol. 63, 2012.URL
6 
R. Barbieri, E. P. Scilingo, G. Valenza, โ€œComplexity and Nonlinearity in Cardiovascular Signals,โ€ Springer, 2017.DOI
7 
P. Singh, โ€œNovel generalized Fourier representations and phase transforms,โ€ Digital signal processing, vol. 106, 2020.DOI
8 
T. Guo, T. Zhang, E. Lim, M. Lรณpez-Benรญtez, F. Ma and L. Yu, โ€œA Review of Wavelet Analysis and Its Applications: Challenges and Opportunities,โ€ IEEE Access, vol. 10, pp. 58869-58903, 2022.DOI
9 
F. Shaheen, B. Verma and M. Asafuddoula, โ€œImpact of Automatic Feature Extraction in Deep Learning Architecture,โ€ 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1-8, 2016.DOI
10 
Q. Zhang, X. Wang, R. Cao, Y. N. Wu, F. Shi and S. -C. Zhu, โ€œExtraction of an Explanatory Graph to Interpret a CNN,โ€ IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 11, pp. 3863-3877, 2021.DOI
11 
Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton., โ€œImageNet classification with deep convolutional neural networks,โ€ Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017.URL
12 
S. Patel, โ€œA comprehensive analysis of convolutional neural network models,โ€ International Journal of Advanced Science and Technology, vol. 29, no. 4, pp. 771-777, 2020.URL
13 
V. Jadeja, A. L. N. Rao, A. Srivastava, S. Singh, P. Chaturvedi and G. Bhardwaj, โ€œConvolutional Neural Networks: A Comprehensive Review of Architectures and Application,โ€ 2023 6th International Conference on Contemporary Computing and Informatics, vol. 6, pp. 460-467, 2023.DOI
14 
Shorten, C., Khoshgoftaar, T.M. โ€œA survey on Image Data Augmentation for Deep Learning,โ€ Journal of Big Data, vol. 6, 2019.DOI
15 
Nakkiran, Preetum, et al., โ€œDeep double descent: Where bigger models and more data hurt.,โ€ Journal of Statistical Mechanics: Theory and Experiment, vol. 2021, no. 12, 2021.DOI

์ €์ž์†Œ๊ฐœ

๊น€๋„ํ•œ(Dohan Kim)
../../Resources/kiee/KIEE.2025.74.10.1724/au1.png

He received the B.S. degree from the School of Electrical Engineering, Pukyong National University, Busan, South Korea, in 2025, where he is currently pursuing the M.S. degree. His research interests include power quality assessment, deep learning and the computer simulation of power systems.

๋ฐ•์ฐฝํ˜„(Chang-Hyun Park)
../../Resources/kiee/KIEE.2025.74.10.1724/au2.png

He received the B.S. and Ph.D. degrees in electrical engineering from Inha University, in 2001 and Korea University, in 2007, respectively. He is currently a Professor with the School of Electrical Engineering, Pukyong National University, Busan, South Korea. His research interests include power quality assessment, data visualization, and the computer simulation of power systems.