• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electronic Engineering, Kangnam University, Republic of Korea.)



Brushless DC motors, deep reinforcement learning, online parameter tuning, state-space control

1. ์„œ ๋ก 

BLDC(brushless DC) ๋ชจํ„ฐ๋Š” ๋†’์€ ํšจ์œจยท์‘๋‹ต์„ฑยท๋‚ด๊ตฌ์„ฑ์ด ์š”๊ตฌ๋˜๋Š” ๋กœ๋ด‡, ๋“œ๋ก , ์ฐจ๋Ÿ‰ ๊ตฌ๋™ ๋ถ„์•ผ์—์„œ ํ‘œ์ค€ ๊ตฌ๋™์›์œผ๋กœ ๋„๋ฆฌ ์ฑ„ํƒ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ถŒ์„  ์˜จ๋„ ์ƒ์Šน, ์ž์† ์•ฝํ™”, ์œคํ™œ ์ƒํƒœ ๋ณ€ํ™”, ๊ฐ€๋ณ€ ํ•˜์ค‘ ๋“ฑ์œผ๋กœ ์ „๊ธฐยท๊ธฐ๊ณ„ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์—ดํ™”ํ•˜๋ฉฐ, ์ด๋Š” ์†๋„ยทํ† ํฌ ์„ฑ๋Šฅ ์ €ํ•˜๋กœ ์ด์–ด์ง„๋‹ค๋Š” ์‚ฌ์‹ค์ด ๋‹ค์ˆ˜์˜ ์—ฐ๊ตฌ์—์„œ ๋ณด๊ณ ๋˜์—ˆ๋‹ค [1- 2]. ๋”๋ถˆ์–ด ํ˜„์žฅ ์‹ ํ˜ธ ํ™˜๊ฒฝ์—๋Š” ์„ผ์„œยท์ „์›์˜ ๊ณ ์ฃผํŒŒ ์žก์Œ์ด ๊ณต์กดํ•œ๋‹ค. ํŠนํžˆ ์ €๊ฐ€ยท์†Œํ˜• ์‹œ์Šคํ…œ์—์„œ ๋ณดํŽธ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” Hall ์œ„์น˜ ์„ผ์„œ๋Š” ์ง€ํ„ฐ ๋ฐ ์ง€์—ฐ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์œ„์น˜ ์ถ”์ •์˜ ์‹œ๊ฐ„์  ๋ถˆํ™•์‹ค์„ฑ์„ ์œ ๋ฐœํ•œ๋‹ค [3]. ์ด๋Ÿฌํ•œ ์š”์ธ๋“ค์€ ์ œ์–ด๊ธฐ ์„ค๊ณ„ ์—ฌ์œ ๋ฅผ ์ถ•์†Œ์‹œํ‚ค๊ณ , ์ดˆ๊ธฐ ์กฐ์ • ์„ฑ๋Šฅ์˜ ์žฅ๊ธฐ ์œ ์ง€์— ์–ด๋ ค์›€์„ ์ดˆ๋ž˜ํ•œ๋‹ค [4].

์ด ๋ฌธ์ œ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ•์ธ ๋น„์„ ํ˜• ์ œ์–ด์™€ ์˜ˆ์ธกยท์ตœ์  ์ œ์–ด๊ฐ€ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. SMC(sliding mode control)๋Š” ๋ชจ๋ธ ๋ถˆํ™•์‹ค์„ฑ๊ณผ ์™ธ๋ž€์— ๊ฐ•์ธํ•˜๋ฉฐ, ๊ณผ๋„ ์˜ค๋ฒ„์ŠˆํŠธ๋ฅผ ์–ต์ œํ•˜๊ณ  ๋ถ€ํ•˜ ๋ณ€๋™ ๋ณต์› ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ•  ์ˆ˜ ์žˆ์Œ์ด ๋ณด๊ณ ๋˜์—ˆ๋‹ค [5]. ๋ฐ˜๋ฉด, ๊ตฌํ˜„์— ๋”ฐ๋ผ ์˜ค๋ฒ„์ŠˆํŠธ ๋ฐ ์‘๋‹ต ์ง€์—ฐ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์–ด ์ฒด๊ณ„์ ์ธ ์„ค๊ณ„ยท์กฐ์ • ์ ˆ์ฐจ๊ฐ€ ์š”๊ตฌ๋œ๋‹ค.

์˜ˆ์ธกยท์ตœ์  ์ œ์–ด ์ธก๋ฉด์—์„œ๋Š” ์ „๋ ฅ๋ณ€ํ™˜๊ธฐ ์Šค์œ„์นญ ์ œ์•ฝ๊ณผ ๊ตฌ๋™๊ณ„ ๋น„์„ ํ˜•์„ ๋ช…์‹œ์ ์œผ๋กœ ๋‹ค๋ฃจ๋Š” MPC(model predictive control) ๊ณ„์—ด์ด BLDC์— ์ ์šฉ๋˜์–ด ์ „ํ™˜ ๊ตฌ๊ฐ„ ๋งค๋„๋Ÿฌ์›€๊ณผ ์†๋„ ํ’ˆ์งˆ์„ ๊ฐœ์„ ํ•˜์˜€๊ณ , NMPC(nonlinear model predictive control)๋Š” ์ œ์•ฝ ํ•˜์˜ ์‘๋‹ต์„ ์ฒด๊ณ„์ ์œผ๋กœ ๋‹ค๋ฃจ๋Š” ์žฅ์ ์„ ๋ณด์˜€๋‹ค [6]. ๋‹ค๋งŒ ์‚ฐ์—… ์ „๋ฐ˜์—์„œ ๋ฒ”์šฉ ์ œ์–ด๊ธฐ์˜ ์‹ค์‚ฌ์šฉ ๋น„์ค‘์€ ์—ฌ์ „ํžˆ PID ๊ณ„์—ด์ด ์••๋„์ ์ด๋‹ค. ๊ตฌ์กฐ ๋‹จ์ˆœ์„ฑ, ํ•ด์„ ์šฉ์ด์„ฑ, ์œ ์ง€๋ณด์ˆ˜ ํŽธ์˜์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , PID๋Š” ์ฐธ์กฐ ์ถ”์ข…๊ณผ ์™ธ๋ž€ ์–ต์ œ๋ฅผ ๋™์ผ ์ด๋“์œผ๋กœ ์ ˆ์ถฉํ•ด์•ผ ํ•˜๋ฉฐ, ๋ฏธ๋ถ„ํ•ญ์˜ ๊ณ ์ฃผํŒŒ ์ฆํญ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด Hall ์‹ ํ˜ธ์˜ ์žก์Œ์— ๋ฏผ๊ฐํ•˜๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋˜ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€ํ™”์— ์ ์‘ํ•˜์ง€ ๋ชปํ•ด ์žฅ๊ธฐ๊ฐ„ ์šด์šฉ ์‹œ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋œ๋‹ค.

์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ PID์™€ ๋‹ค๋ฅด๊ฒŒ ์ถœ๋ ฅ ๋ฏธ๋ถ„์„ ์ง์ ‘ ์“ฐ์ง€ ์•Š๊ณ  ๊ด€์ธก๊ธฐ ๊ธฐ๋ฐ˜ ์ถ”์ •๊ณผ ๋‚ด๋ถ€ ์ƒํƒœ ํ”ผ๋“œ๋ฐฑ์„ ํ™œ์šฉํ•˜๋Š” SS-PID(State-Space PID)๋ฅผ ๋„์ž…ํ•ด ์žก์Œ ๋ฏผ๊ฐ์„ฑ์„ ์™„ํ™”ํ•˜๊ณ  ์‹ค์ธก ์‹ ํ˜ธ์˜ ๊ฑฐ์น ๊ธฐ์—๋„ ์•ˆ์ •์ ์ธ ์ถ”์ข…์„ ์–ป๋Š” ๊ฒƒ์„ ์ถœ๋ฐœ์ ์œผ๋กœ ํ•œ๋‹ค [7]. ๋‹ค๋งŒ SS-PID๋„ ์ด๋“์ด ๊ณ ์ •๋˜๋ฉด ๋ชจํ„ฐ ์—ดํ™”์— ๋”ฐ๋ฅธ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€ํ™”์— ์ทจ์•ฝํ•˜๊ณ , ๊ด€์ธก๊ธฐ ์ด๋“ ๋“ฑ ์กฐ์ •ํ•ด์•ผ ํ•  ๋ณ€์ˆ˜๊ฐ€ PID ๋Œ€๋น„ ์ฆ๊ฐ€ํ•˜๋ฏ€๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ํ”Œ๋žœํŠธ์—์„œ๋Š” ์ˆ˜๋™ ์žฌ์กฐ์ •์˜ ๋ถ€๋‹ด์ด ํฌ๋‹ค. ๊ณ ์ „์  PID ์ œ์–ด๊ธฐ์— ๋Œ€ํ•˜์—ฌ ํผ์ง€, ์ง„ํ™”์•Œ๊ณ ๋ฆฌ์ฆ˜, ์ž…์ž ๊ตฐ์ง‘ ์ตœ์ ํ™”, ์‹ ๊ฒฝ๋ง ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธฐ๋ฒ•์œผ๋กœ ์—ฐ๊ตฌ๋˜์—ˆ์œผ๋‚˜ ์ฃผ๋กœ ๊ณ ์ •์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ์ œ์–ด๊ธฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜๊ฑฐ๋‚˜ ์˜คํ”„๋ผ์ธ ์ตœ์ ํ™”๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ์—ฐ์† ์กฐ์ •์— ํ•œ๊ณ„๋ฅผ ๋ณด์˜€๋‹ค.

๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด SS-PID์˜ ์ œ์–ด๋ณ€์ˆ˜๋ฅผ ์˜จ๋ผ์ธ์œผ๋กœ ์žฌ์กฐ์ •ํ•˜๋Š” ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ DDPG(Deep deterministic policy gradient) ์—์ด์ „ํŠธ๋ฅผ ์ œ์•ˆํ•œ๋‹ค [8- 12]. ์ด๋Ÿฌํ•œ ์กฐ์ •๊ธฐ๋Š” SS-PID ์ œ์–ด๊ธฐ์— ํ•™์Šต ๊ธฐ๋ฐ˜ ์˜จ๋ผ์ธ ์žฌ์กฐ์ • ๊ธฐ๋ฒ•์„ ํ†ตํ•ฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์‹ค์ œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ ๋†’์€ ์ œ์–ด ์„ฑ๋Šฅ์„ ๋™์‹œ์— ํ™•๋ณดํ•œ๋‹ค. ํ•ต์‹ฌ ์„ค๊ณ„๋Š” ์•ˆ์ „๊ณผ ์žฌํ˜„์„ฑ์ด๋‹ค. ์ฒซ์งธ, ์—์ด์ „ํŠธ์˜ ์•ก์…˜์„ ํ†ตํ•œ ์กฐ์ •๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์ดˆ๊ธฐ ์ธ์ฆ๋œ SS-PID์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์ฃผ๋ณ€์˜ ์Šค์ผ€์ผ๋กœ ์ œํ•œ๋˜์–ด ๋ถˆ์•ˆ์ •ํ•œ ํƒ์ƒ‰์€ ์›์ฒœ ์ฐจ๋‹จํ•œ๋‹ค. ๋˜ํ•œ ์ œ์–ด ๋ณ€์ˆ˜๋ฅผ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋Š” ์—ฐ์† ์•ก์…˜์„ ์‚ฐ์ถœํ•˜์—ฌ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ์กฐ์ •ํ•œ๋‹ค. ๋‘˜์งธ, ๊ด€์ธก์€ ์˜ค์ฐจ, ์˜ค์ฐจ ๋ณ€ํ™”์œจ, ๋ˆ„์  ์˜ค์ฐจ๋กœ ๊ตฌ์„ฑํ•ด ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์ •๋ณด๋งŒ ์••์ถ•ํ•œ๋‹ค. ์…‹์งธ, ๋ณด์ƒ์€ ์Œ์˜ ์˜ค์ฐจ๋ฅผ ์ ๋ถ„ํ•˜์—ฌ ์‹ค์šฉ์  ์ œ์–ด๋ฅผ ์œ ๋„ํ•œ๋‹ค. ๋„ท์งธ, Simulink ํ™˜๊ฒฝ์—์„œ ์—ํ”ผ์†Œ๋“œ๋งˆ๋‹ค ๋ฆฌ์…‹ ํ•จ์ˆ˜๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ฌผ๋ฆฌ์  ์ƒยทํ•˜ํ•œ ์‚ฌ์ด์—์„œ ๋ฌด์ž‘์œ„ ์ดˆ๊ธฐํ™”ํ•˜์—ฌ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์—์ด์ „ํŠธ๊ฐ€ ์ตœ์ ์˜ ์ œ์–ด ๋ณ€์ˆ˜๋ฅผ ์„ ํƒํ•˜๋„๋ก ํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตฌํ˜„๊ณผ ์„ค๊ณ„๊ฐ€ ๋‹จ์ˆœํ•˜๋ฉฐ ๊ธฐ์กด์˜ PID ๊ณ„์—ด์˜ ์ œ์–ด๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ ๊ณ ์ „์  PID์™€ ๋น„๊ตํ•˜์—ฌ ๊ณ ์ฃผํŒŒ ์žก์Œ์˜ ์˜ํ–ฅ์„ ์กฐ์ ˆ๊ฐ€๋Šฅํ•œ SS-PID๋กœ Hall ์„ผ์„œ ์žก์Œ ๋ฏผ๊ฐ๋„๋ฅผ ๋‚ฎ์ถ”๋ฉด์„œ, ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€ํ™”๋กœ ์ธํ•œ ์žฅ๊ธฐ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๋”ฅ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋Š” ๊ฒƒ์œผ๋กœ ๋น„์„ ํ˜•์  ํŠน์„ฑ์„ ํ•™์Šต๊ฐ€๋Šฅํ•œ DDPG ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ์˜จ๋ผ์ธ ์žฌ์กฐ์ •์œผ๋กœ ๋ณด์™„ํ•˜๋Š” ์‹ค๋ฌด ์ง€ํ–ฅ์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค.

2. ์ด๋ก ์  ๋ฐฐ๊ฒฝ

2.1 BLDC ๋ชจํ„ฐ ๋ชจ๋ธ ์„ค๊ณ„

๋ณธ ์—ฐ๊ตฌ๋Š” ํ‰๊ท ํ™”๋œ ๋‹จ์ผ์ถ•(์ „๊ธฐโ€“๊ธฐ๊ณ„ ๊ฒฐํ•ฉ) BLDC ๋™์—ญํ•™์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋•Œ ์ „๊ธฐ์‹์€ ์‹ (1) ๊ธฐ๊ณ„์‹์€ ์‹ (2)์™€ ๊ฐ™์ด ์ •์˜๋œ๋‹ค [13- 14].

(1)
$L\dot{i}(t)+Ri(t)+K_{e}\omega(t)= v(t)$
(2)
$J\dot{\omega}(t)+B\omega(t)= K_{t}i(t)-\tau_{L}$

์—ฌ๊ธฐ์„œ $i(t)$๋Š” ์ „๋ฅ˜, $u(t)$๋Š” ์ „์••, $\omega(t)$๋Š” ๊ฐ์†๋„, $\tau_{L}(t)$์€ ๋ถ€ํ•˜ํ† ํฌ,$L$์€ ๊ถŒ์„  ์ธ๋•ํ„ด์Šค, $R$์€ ์ €ํ•ญ, $K_{e}$๋Š” ์—ญ๊ธฐ์ „๋ ฅ ์ƒ์ˆ˜, $J$๋Š” ์งˆ๋Ÿ‰๊ด€์„ฑ, $B$๋Š” ์ ์„ฑ ๋งˆ์ฐฐ, $K_{t}$๋Š” ํ† ํฌ์ƒ์ˆ˜์ด๋‹ค.

ํ•˜์ง€๋งŒ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ถ€ํ•˜ํ† ํฌ๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์œผ๋ฉฐ ์ด๋•Œ ๋ถ€ํ•˜ํ† ํฌ๊ฐ€ ์—†๋‹ค๋ฉด ๊ธฐ๊ณ„์  ์‹œ์ •์ˆ˜ $\tau_{m}$๊ฐ€ ๋งค์šฐ ์ž‘์•„์ ธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ค‘ ์ƒ˜ํ”Œ๋งํƒ€์ž„์ด ์‹œ์ •์ˆ˜์— ๊ฐ€๊นŒ์›Œ์ง€์ง€ ์•Š๋„๋ก ์ƒ˜ํ”Œ๋ง ํƒ€์ž„์„ ํฌ๊ฒŒ ์ค„์—ฌ์•ผ ํ•˜๋ฉฐ ๋˜ํ•œ ๊ณ ์ด๋“, ๊ณผ๋ฏผ์ œ์–ด๊ฐ€ ์„ค๊ณ„๋˜๊ธฐ ๋•Œ๋ฌธ์— ์•ˆ์ •์ ์ธ ํ•™์Šต์ด ์–ด๋ ค์›Œ์ง„๋‹ค. ๋”ฐ๋ผ์„œ ํ˜„์‹ค์ ์ธ ๋ชจํ„ฐ์˜ ๊ตฌ๋™ํ™˜๊ฒฝ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ชจํ„ฐ์— ๊ท ์ผ ์›ํŒ ๊ด€์„ฑ์ฒด ๋ถ€์ฐฉ์„ ๊ฐ€์ •ํ•˜์˜€์œผ๋ฉฐ ์ด๋Š” ์‹ (3)์˜ ์งˆ๋Ÿ‰ ๊ด€์„ฑ $J$์™€๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

(3)
$J =J_{motor}+\dfrac{1}{2}m\times r^{2}$

์—ฌ๊ธฐ์„œ $J_{motor}$์€ ๋ชจํ„ฐ์˜ ์งˆ๋Ÿ‰๊ด€์„ฑ์„ ์˜๋ฏธํ•˜๊ณ  $m$์€ ๊ด€์„ฑ์ฒด์˜ ์งˆ๋Ÿ‰, $r$์€ ๊ด€์„ฑ์ฒด์˜ ๋ฐ˜์ง€๋ฆ„์„ ์˜๋ฏธํ•œ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ ์‹ (1)๊ณผ ์‹ (2)์— ์˜ํ•ด BLDC๋ชจํ„ฐ์˜ ์ „์••์†๋„ ์ „๋‹ฌํ•จ์ˆ˜๋Š” ์‹ (4)๊ณผ ๊ฐ™์ด ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค.

(4)
$G_{\omega v}(s)=\dfrac{K_{t}}{JLs^{2}+(JR+BL)s+(BR+K_{t}K_{e})}$

์—ฌ๊ธฐ์„œ $s$๋Š” ๋ผํ”Œ๋ผ์Šค ๋ณ€ํ™˜์˜ ๋ณต์ˆ˜ ์ฃผํŒŒ์ˆ˜ ๋ณ€์ˆ˜์ด๋‹ค.

2.2 SS-PID

SS-PID๋Š” ์ „๋‹ฌํ•จ์ˆ˜ ํ˜•ํƒœ์˜ ๊ณ ์ „์ ์ธ ๊ตฌ์กฐ์˜ PID๋ฅผ ์ƒํƒœ ๊ณต๊ฐ„ ๋ฐฉ์ •์‹์˜ ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•˜์—ฌ ์ƒํƒœ๊ณต๊ฐ„์ƒ์˜ ๋ถ„์„๊ธฐ๋ฒ•์„ PID์ œ์–ด๊ธฐ์—์„œ๋„ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค [7]. ์ด๋•Œ SS-PID๋Š” ๊ด€์ธก๊ธฐ๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ PID์˜ ๋‚ด๋ถ€ ์ƒํƒœ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์œผ๋กœ PID๋ฅผ ์ƒํƒœ ๊ณต๊ฐ„ ๋ฐฉ์ •์‹์œผ๋กœ ํ‘œํ˜„ํ•˜์˜€๋‹ค. SS-PID๋Š” $\overline{x}(t)$์™€ $\overline{r}(t)$๋ฅผ ์ž…๋ ฅ๋ฐ›์•„ ์ œ์–ด์ž…๋ ฅ $u(t)$์„ ์ถœ๋ ฅํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ $\overline{x}(t):=\begin{pmatrix}\dot{y}(t)\\y(t)\\\int y(t)dt\end{pmatrix}$, $\overline{r}(t):=\begin{pmatrix}\dot{r}(t)\\r(t)\\\int r(t)dt\end{pmatrix}$์ด๋‹ค.

SS-PID์˜ ์ƒํƒœ๋ฐฉ์ •์‹์€ ์‹ (5)์™€ ๊ฐ™๋‹ค.

(5)

$\begin{cases} \dot{\overline{x}}(t)=(\overline{A}_{e}-\overline{L}_{o}\overline{C}_{e})\overline{x}(t)+\overline{B}_{e}u(t)+\overline{L}_{o}y(t)\\ u(t)=\overline{K}_{o}(\overline{r}(t)-\overline{x}(t)) \end{cases}$

$\overline{A}_{e}=\left[\begin{matrix}0&0&0\\1&0&0\\0&1&0\end{matrix}\right], \overline{B}_{e}=\left[\begin{matrix}1\\0\\0\end{matrix}\right], \overline{C}_{e}=\left[\begin{matrix}0&1&0\end{matrix}\right], \\ \overline{L}_{o}=\left[\begin{aligned}\beta_{1}\\\beta_{2}\\1\end{aligned}\right]^{T}, \overline{K}_{o}=\begin{bmatrix}K_{d}&K_{p}&K_{i}\end{bmatrix}$

์—ฌ๊ธฐ์„œ $K_{d}, K_{p}, K_{i}$๋Š” ๊ฐ๊ฐ ๋ฏธ๋ถ„, ๋น„๋ก€, ์ ๋ถ„์— ๋Œ€ํ•œ ์ด๋“์„ ์˜๋ฏธํ•˜๋ฉฐ ์ œ์–ด์ž…๋ ฅ์˜ ๋™ํŠน์„ฑ์„ ๊ฒฐ์ •ํ•œ๋‹ค. ๋˜ํ•œ $\overline{L}_{o}$๋Š” ๊ด€์ธก๊ธฐ์˜ ์ด๋“์„ ์˜๋ฏธํ•˜๋ฉฐ ๊ทธ ์ด๋“์˜ ๋น„์œจ์— ๋”ฐ๋ผ ๊ด€์ธก๊ธฐ์˜ ๋™ํŠน์„ฑ์„ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์„ค๊ณ„๋œ SS-PID๋Š” ๊ด€์ธก๊ธฐ ์ด๋“ $\overline{L}_{o}$๋ฅผ ์กฐ์ •ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๊ทธ ์ฃผํŒŒ์ˆ˜ ์‘๋‹ต์„ ๋ฐ”๊พธ์–ด ๊ณ ์ฃผํŒŒ ๋…ธ์ด์ฆˆ์˜ ์˜ํ–ฅ์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค [11- 12]. ๊ทธ๋ฆผ 1์€ ์ œ์•ˆ๋œ BLDC๋ชจํ„ฐ์— ๋งž๊ฒŒ ์„ค๊ณ„๋œ PID์™€ SS-PID์˜ ๋ณด๋“œ ํฌ๊ธฐ์„ ๋„์ด๋‹ค. PID์™€ ๋น„๊ตํ•˜์—ฌ SS-PID๋Š” ๊ณ ์ฃผํŒŒ์—์„œ ๊ทธ ํฌ๊ธฐ๊ฐ€ ๊ฐ์‡ ๋˜๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆผ 2๋Š” ์ œ์–ด๊ธฐ์™€ BLDC๋ชจํ„ฐ์˜ ๊ฐœ๋ฃจํ”„ ๋ณด๋“œ ํฌ๊ธฐ์„ ๋„์ด๋ฉฐ ์ด ๋˜ํ•œ ๊ณ ์ฃผํŒŒ์—์„œ ๊ทธ ํฌ๊ธฐ๊ฐ€ ์ž‘์•„์ง€๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ์ฃผํŒŒ์—์„œ์˜ ํฌ๊ธฐ์˜ ๊ฐ์‡ ๋Š” ์„ผ์„œ์—์„œ ์ž…๋ ฅ๋˜๋Š” ๊ณ ์ฃผํŒŒ ํŠน์„ฑ์ด ๊ฐ•ํ•œ ์žก์Œ์€ ๊ฐ์‡„๋˜๋ฉฐ ๋ฐ˜๋Œ€๋กœ ๋น„๊ต์  ์ €์ฃผํŒŒ์˜์—ญ์— ์žˆ๋Š” ๋ ˆํผ๋Ÿฐ์Šค ์ž…๋ ฅ์„ ์ถ”์ข…ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค [15].

๊ทธ๋ฆผ 1. PID ์ œ์–ด๊ธฐ์™€ SS-PID์˜ ๋ณด๋“œ ํฌ๊ธฐ์„ ๋„

Fig. 1. Bode magnitude plots of PID and SS-PID controllers

../../Resources/kiee/KIEE.2026.75.2.408/fig1.png

๊ทธ๋ฆผ 2. ์ œ์–ด๊ธฐโ€“ํ”Œ๋žœํŠธ ๊ฐœ๋ฃจํ”„ ๋ณด๋“œ ํฌ๊ธฐ์„ ๋„

Fig. 2. Open-loop Bode magnitude of controllerโ€“plant

../../Resources/kiee/KIEE.2026.75.2.408/fig2.png

3. ๊ฐ•ํ™”ํ•™์Šต ์„ค๊ณ„

BLDC ๊ตฌ๋™์—์„œ๋Š” ์˜จ๋„ ์ƒ์Šนยท๋…ธํ™”ยท์œคํ™œยท๋ถ€ํ•˜ ๋ณ€๋™ ๋“ฑ์œผ๋กœ ์ „๊ธฐยท๊ธฐ๊ณ„ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€๋™ํ•œ๋‹ค. ์ด๋•Œ ์ œ์–ด๊ธฐ์˜ ์„ฑ๋Šฅ๊ณผ ์ œ์–ด๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ $\theta$์‚ฌ์ด์˜ ์‚ฌ์ƒ์€ ๋น„์ •์ƒ, ๋น„์ •ํ˜•์ด๋ฉฐ, ์œ ๋„ ๋ชจ๋ธ๋งŒ์œผ๋กœ ์ตœ์ ์˜ ์ œ์–ด๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋ฅผ ๋ชจ๋ธ์— ๋œ ์˜์กดํ•˜๋ฉด์„œ๋„ ์—ฐ์† ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” ๊ฒฐ์ •๋ก  ์ •์ฑ…๊ฒฝ์‚ฌ(Deterministic Policy Gradient) ๊ธฐ๋ฐ˜์˜ ๊ฐ•ํ™”ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ํ•ด์†Œํ•œ๋‹ค [8].

๊ฐ•ํ™”ํ•™์Šต์—์„œ ์‹œ๊ฐ„ $t$์—์„œ์˜ ๊ด€์ธก $o_{t}$, ์•ก์…˜ $a_{t}$, ๋ณด์ƒ $r_{t}$์ด๋ผ๊ณ  ํ•œ๋‹ค. ์ •์ฑ… $\pi(a | o ;\theta)$์€ ๊ด€์ธก $o_{t}$๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ ์•ก์…˜ $a_{t}$๋ฅผ ์„ ํƒํ•˜๋Š” ํ™•๋ฅ ๋ถ„ํฌ์ด๋‹ค. DDPG๋Š” ์•กํ„ฐ-ํฌ๋ฆฌํ‹ฑ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋Š” ๊ฐ•ํ™”ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. DDPG์˜ ์•กํ„ฐ์™€ ํฌ๋ฆฌํ‹ฑ์€ ๋”ฅ์‹ ๊ฒฝ๋ง์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ ์ด๋Ÿฌํ•œ ์‹ ๊ฒฝ๋ง์€ ์„ฑ๋Šฅ๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ„์˜ ๋น„์ •์ƒ, ๋น„์ •ํ˜•์„ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค [16]. ์—ฌ๊ธฐ์„œ ์•กํ„ฐ๋Š” ๊ด€์ธก์„ ๋ฐ›์•„ ๊ด€์ธก๊ฐ’์— ๋”ฐ๋ฅธ ์ตœ์ ์˜ ์•ก์…˜์„ ์ถœ๋ ฅํ•˜๊ณ  ํฌ๋ฆฌํ‹ฑ์€ ๊ด€์ธก๊ณผ ์•ก์…˜ ์กฐํ•ฉ์— ๋”ฐ๋ฅธ ๊ฐ€์น˜(Q-value)๋ฅผ ํ‰๊ฐ€ํ•˜์—ฌ ์ •์ฑ…์„ ๊ฐœ์„ ํ•˜๋„๋ก ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋”ฅ์‹ ๊ฒฝ๋ง์„ ๊ตฌ์กฐ๋กœ ํ•˜๋Š” ๊ฐ•ํ™”ํ•™์Šต์€ ๋”ฅ์‹ ๊ฒฝ๋ง์˜ ๋ธ”๋ž™๋ฐ•์Šค ๋ฌธ์ œ๋ฅผ ๋™์ผํ•˜๊ฒŒ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๊ฒฝ์šฐ์— ๋”ฐ๋ผ ์ฒ˜์Œ ๋ณด๋Š” ์ƒํ™ฉ์—์„œ ์—์ด์ „ํŠธ๋Š” ํ‹€๋ฆฐ ์•ก์…˜์„ ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๊ทธ๋กœ ์ธํ•ด ์ž˜๋ชป๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ์กฐ์ •๋˜์–ด ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง€๊ฑฐ๋‚˜ ์ถœ๋ ฅ์ด ๋ฐœ์‚ฐํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 3. ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ SS-PID ์˜จ๋ผ์ธ ์กฐ์ • ํ”„๋ ˆ์ž„์›Œํฌ

Fig. 3. RL-based online tuning framework for the SS-PID controller

../../Resources/kiee/KIEE.2026.75.2.408/fig3.png

๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ทธ๋ฆผ 3์˜ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์กฐ์ • ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์œ„ ๊ตฌ์กฐ์—์„œ๋Š” ์—์ด์ „ํŠธ๊ฐ€ ์ง์ ‘ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์กฐ์ •ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ ์•ก์…˜ํ•จ์ˆ˜์— ์˜ํ•ด ์กฐ์ •๋˜๋ฉฐ ์ด๋•Œ ์กฐ์ •๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ตœ๋Œ€์ตœ์†Œ ๊ฐ’์„ ๊ณ ์ •ํ•˜์—ฌ ์•ˆ์ •์„ฑ์„ ๋†’์ด๋ฉฐ ์•ก์…˜์˜ ์ ๋ถ„์„ ํ†ตํ•˜์—ฌ ๊ธ‰๊ฒฉํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ๋ณ€ํ™”๋ฅผ ์ œํ•œํ•˜์˜€๋‹ค.

3.1 ๊ด€์ธก๊ณผ ์•ก์…˜์˜ ์ •์˜

๊ด€์ธก $o_{t}$์€ ๊ฐ•ํ™”ํ•™์Šต์˜ ์—์ด์ „ํŠธ๊ฐ€ ํ™˜๊ฒฝ์œผ๋กœ๋ถ€ํ„ฐ ๋ฐ›์„ ์ˆ˜ ์žˆ๋Š” ์ •๋ณด์ด๋‹ค. ์—์ด์ „ํŠธ๋Š” ๊ด€์ธก์— ๋”ฐ๋ผ ์ตœ์ ์˜ ์•ก์…˜์„ ํ•˜๋„๋ก ํ•™์Šตํ•˜๋ฉฐ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจํ„ฐ์˜ ๋ ˆํผ๋Ÿฐ์Šค ์†๋„๋ฅผ ๋น ๋ฅด๊ณ  ์•ˆ์ •์ ์œผ๋กœ ์ถ”์ข…ํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋ ˆํผ๋Ÿฐ์Šค ์†๋„์™€ ๋ชจํ„ฐ ์†๋„๋ฅผ ๋บ€ ์—๋Ÿฌ๋ฅผ $e(t)= r(t)-v(t)$ ๋ฏธ๋ถ„, ์ ๋ถ„ํ•˜์—ฌ ์ฃผ์—ˆ๋‹ค.

(6)
$o_{t}=\begin{bmatrix}\dfrac{d}{dt}e(t)& e(t)&\int_{0}^{t}e(\tau)d\tau\end{bmatrix}$

์•ก์…˜์€ ๊ฐ„์ ‘์ ์œผ๋กœ ์ œ์–ด๊ธฐ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์กฐ์ •ํ•˜๋ฉฐ ์ตœ์ ํ™”๋œ ์ œ์–ด๊ธฐ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์˜จ๋ผ์ธ์œผ๋กœ ์ฐพ์•„๋‚ธ๋‹ค. ์ œ์–ด๊ธฐ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ์•ก์…˜์€ ๊ฐ๊ฐ ์‹ (7)๊ณผ ์‹ (8)์— ์ •์˜ํ•˜์˜€๋‹ค.

(7)
$\theta(t)=\begin{bmatrix}K_{p}(t)&K_{i}(t)&K_{d}(t)&\beta_{1}(t)&\beta_{2}(t)\end{bmatrix}^{T}$
(8)
$a_{t}=\begin{bmatrix}a_{t, p}&a_{t, i}&a_{t, d}&a_{t, \beta 1}&a_{t, \beta 2}\end{bmatrix}^{T}$

์•ก์…˜ ๋ฒกํ„ฐ $a_{t}$๋Š” ๊ฐ•ํ™”ํ•™์Šต ์—์ด์ „ํŠธ๊ฐ€ ์ œ์–ด๊ธฐ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์กฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ถœ๋ ฅํ•˜๋Š” 5์ฐจ์› ์—ฐ์† ์•ก์…˜ ๊ณต๊ฐ„์„ ์˜๋ฏธํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ ์„ฑ๋ถ„์€ ์ˆœ์„œ๋Œ€๋กœ $K_{p}, K_{i}, K_{d}, \beta_{1}, \beta_{2}$ ์˜ ์ƒ๋Œ€์  ์กฐ์ • ๊ฐ’์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ๋ชจ๋“  ์•ก์…˜์€ $[-1, 1]$ ๋ฒ”์œ„๋กœ ์ •๊ทœํ™” ๋˜์–ด ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ•ํ™”ํ•™์Šต์€ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋งค์šฐ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๋ฉฐ ํ•™์Šต์ค‘์— ์ž˜๋ชป๋œ ์ œ์–ด๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ ํƒํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์‹œ์Šคํ…œ์ด ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๋ถˆ์•ˆ์ •ํ•ด์ง€๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์ƒ๋Œ€ํ•œ๊ณ„ $\lambda$๋ฅผ ์‹ (9)์™€ ๊ฐ™์ด ์ •์˜ํ•œ๋‹ค.

(9)
$\lambda =\begin{bmatrix}\lambda_{p}&\lambda_{i}&\lambda_{d}&\lambda_{\beta 1}&\lambda_{\beta 2}\end{bmatrix}^{T}\ge 0$

์ด๋ ‡๊ฒŒ ์‹ (10)์—๋Š” ์ •ํ•ด์ง„ ์ƒ๋Œ€ํ•œ๊ณ„์— ๋”ฐ๋ผ ๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ตœ๋Œ€ ์ตœ์†Œ๊ฐ’์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.

(10)
$\theta_{\min}=\theta_{0}-(\theta_{0}\bullet\lambda), \theta_{\max}=\theta_{0}+(\theta_{0}\bullet\lambda), $

์—ฌ๊ธฐ์„œ $\theta_{0}$๋Š” ์ดˆ๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’์ด๋‹ค.

์ด๋•Œ ์ƒ๋Œ€ํ•œ๊ณ„๋Š” ๊ณผ๋„ํ•˜๊ฒŒ ํฌ๊ฑฐ๋‚˜ ์ž‘์€ ์ด๋“์„ ์„ค์ •ํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์‹œ์Šคํ…œ์ด ๋ฐœ์‚ฐํ•˜์ง€ ์•Š๋„๋ก ํ•˜์ง€๋งŒ ๋„ˆ๋ฌด ๊ฐ•ํ•˜๊ฒŒ ์ œ์•ฝํ•œ๋‹ค๋ฉด ํƒ์ƒ‰๋ฒ”์œ„๊ฐ€ ์ข์•„์ง€๊ณ  ๋„ˆ๋ฌด ์•ฝํ•˜๊ฒŒ ์ œ์•ฝํ•œ๋‹ค๋ฉด ์‹œ์Šคํ…œ์ด ํ•™์Šต๊ณผ์ •์—์„œ ์‹œ์Šคํ…œ์ด ๊ณ„์†ํ•ด์„œ ๋ฐœ์‚ฐํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์ƒ๋Œ€ ํ•œ๊ณ„์— ์˜ํ•ด ์ •ํ•ด์ง„ ์ตœ๋Œ€์ตœ์†Œ๊ฐ’ ์‚ฌ์ด์—์„œ ํŒŒ๋งˆ๋ฆฌํ„ฐ ์ดˆ๊ธฐ๊ฐ’์— ๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋งž์ถฐ ์Šค์ผ€์ผ๋ง๋œ ์•ก์…˜์˜ ์ ๋ถ„์„ ๋” ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํ‘œํ˜„์ด ์‹ (11)๊ณผ ๊ฐ™์ด ํ‘œํ˜„์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์—ฌ๊ธฐ์„œ ์‹ (12)์€ ์•ก์…˜์˜ ์Šค์ผ€์ผ ํŒŒ๋ผ๋ฏธํ„ฐ $\alpha$๋ฅผ ์ •์˜ํ•œ๋‹ค.

(11)
$\theta(t)= sat(\theta_{0}+\int_{0}^{t}\alpha a(\tau)d\tau ;\theta_{\min}, \theta_{\max})$
(12)
$\alpha =\begin{bmatrix}\alpha_{p}&\alpha_{i}&\alpha_{d}&\alpha_{\beta 1}&\alpha_{\beta 2}\end{bmatrix}\ge 0$

์ด๋ ‡๊ฒŒ ์„ค๊ณ„๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์•ˆ์ „ํ•œ ๋ฒ”์œ„๋‚ด์—์„œ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ์›€์ง์ด๋ฉฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ตœ์ ํ™”ํ•ด ๋‚˜๊ฐ„๋‹ค.

3.2 ๋ณด์ƒํ•จ์ˆ˜ ์ •์˜

๊ฐ•ํ™”ํ•™์Šต์—์„œ ๋ณด์ƒํ•จ์ˆ˜์˜ ์ •์˜๋Š” ํ•™์Šต ์„ฑ๋Šฅ์„ ์ขŒ์šฐํ•œ๋‹ค. ์—์ด์ „ํŠธ๋Š” ๋ˆ„์ ๋ณด์ƒ์„ ์ตœ๋Œ€ํ™”ํ•˜๋„๋ก ์ •์ฑ…์„ ๊ฐฑ์‹ ํ•˜๋ฏ€๋กœ, ๋ณด์ƒ ์„ค๊ณ„๋Š” ์ˆ˜๋ ด ์†๋„, ํ•™์Šต ์•ˆ์ •์„ฑ, ํƒ์ƒ‰โ€“ํ™œ์šฉ ๊ท ํ˜•, ์ •์ฑ…์˜ ์•ˆ์ „์„ฑ/์ผ๋ฐ˜ํ™” ์„ฑํ–ฅ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋ถ€์ ์ ˆํ•œ ๋ณด์ƒ์€ ์ด๋ฅธ ์‹œ์ ์—์„œ์˜ ๊ณผ๋„ํ•œ ํƒ์ƒ‰, ๋ณด์ƒ ํ•ดํ‚น, ๋น„์˜๋„์  ํŽธํ–ฅ, ์ˆ˜์น˜์  ๋ถˆ์•ˆ์ • ๋“ฑ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์†๋„ ์ถ”์ข… ๋งฅ๋ฝ์—์„œ ์˜ค์ฐจ ์ค‘์‹ฌ์˜ ์—ฐ์†ํ˜• ๋ณด์ƒ์„ ์‚ฌ์šฉํ•˜๋ฉฐ, ํฌ์†Œ๋ณด์ƒ์„ ํšŒํ”ผํ•˜๊ณ  ์ •๊ทœํ™”์™€ ํ‰๊ท ํ™”๋ฅผ ํ†ตํ•ด ์กฐ์ • ๋ฏผ๊ฐ๋„๋ฅผ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋„๋ก ์—ํ”ผ์†Œ๋“œ ๊ธธ์ด ๋ถ„๋ณ€์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์„ค๊ณ„๋˜์—ˆ๋‹ค.

์—ฌ๊ธฐ์„œ ์†๋„ ์ถ”์ข… ์˜ค์ฐจ $e(t)$๋ฅผ ์ด์‚ฐ์‹œ๊ฐ„ $t = k\Delta t$์—์„œ์˜ ์˜ค์ฐจ ๋ณ€ํ™”์œจ $\dot{e}(t)$๋กœ ์ •์˜ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ๊ฐ์˜ ์˜ค์ฐจ ๋ฌด์ฐจ์› ์ •๊ทœํ™”๋ฅผ ์ ์šฉํ•˜๋ฉด ์‹ (13)๊ฐ€ ๋‚˜์˜จ๋‹ค.

(13)
$e_{n}=\tanh(\kappa\dfrac{e}{E}), \dot{e}_{n}=\tanh(\kappa\dfrac{\dot{e}\Delta t}{E})$

์—ฌ๊ธฐ์„œ $E$๋Š” ์˜ค์ฐจ ์Šค์ผ€์ผ, $\kappa$๋Š” ํฌํ™”์†๋„๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์ƒ์ˆ˜์ด๋‹ค. $\tanh(\bullet)$๋ฅผ ์ ์šฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ƒํ•ญ์€ ์œ ๊ณ„๋ฅผ ๊ฐ€์ง€๋„๋ก ํ•˜์˜€๋‹ค [17]. ์ด๋Š” ํฐ ์˜ค์ฐจ์—์„œ์˜ ํฌํ™”๋กœ ์ด์ƒ์น˜์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ์„ ์ œ๊ณตํ•˜๊ณ , ์ž‘์€ ์˜ค์ฐจ ์˜์—ญ์—์„œ๋Š” ๊ฑฐ์˜ ์„ ํ˜• ๊ฐ๋„๋ฅผ ์œ ์ง€ํ•˜์—ฌ ํ•™์Šต ์•ˆ์ •์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค.

๊ฐ ์Šคํƒญ์— ๋”ฐ๋ฅธ ์›์‹œ๋ณด์ƒ์€ ์‹ (14)์— ์ •์˜๋œ๋‹ค.

(14)
$r_{step}=r_{core}+r_{prog} \\ r_{core}= -(w_{1}e_{n}^{2}+w_{2}| e_{n} | +w_{\dot{e}}\dot{e}_{n}^{2}) \\ r_{prog}= w_{prog}\max(0, -e_{n}\dot{e}_{n})$

$r_{core}$๋Š” ์˜ค์ฐจ๋ฅผ ํŒจ๋„ํ‹ฐ๋กœ ์ œ๊ณตํ•˜๋ฉฐ ๊ฐ ์„ธ ๊ฐœ์˜ ํ•ญ์€ ์ œ๊ณฑ์˜ค์ฐจ, ์ ˆ๋Œ€ ์˜ค์ฐจ, ๊ธฐ์šธ๊ธฐ ์ถ”์ข… ์–ต์ œ๋ฅผ ํŽ˜๋„ํ‹ฐ๋กœ ์ค€๋‹ค. ์ œ๊ณฑ ์˜ค์ฐจํ•ญ์€ ๋Œ€์˜ค์ฐจ ๊ตฌ๊ฐ„์—์„œ ๋น ๋ฅธ ์ˆ˜๋ ด์„ ์œ ๋„ํ•˜๋ฉฐ ์ ˆ๋Œ€ ์˜ค์ฐจ๋Š” ์ „์ฒด๊ตฌ๊ฐ„์—์„œ ํ‰๊ท ์ ์ธ ์ˆ˜๋ ด์„ ์œ ๋„ํ•˜์—ฌ ์ž‘์€ ์˜ค์ฐจ์— ๋Œ€ํ•ด์„œ๋„ ์ผ์ •ํ•œ ๊ฐ๋„๋ฅผ ์œ ์ง€์‹œํ‚ค๋ฉฐ ๊ธฐ์šธ๊ธฐ ์ถ”์ข… ์–ต์ œํ•ญ์€ ์˜ค์ฐจ์˜ ๋ณ€ํ™”์œจ์— ๋Œ€ํ•œ ํŽ˜๋„ํ‹ฐ๋กœ ๋„ˆ๋ฌด ๋น ๋ฅธ ์ด๋“ ๋ณ€๋™์ด๋‚˜ ๊ณ ์ฃผํŒŒ ์ง„๋™์„ ์–ต์ œํ•œ๋‹ค. $r_{prog}$๋Š” ์ง„ํ–‰ํ•ญ์œผ๋กœ $e^{2}$์˜ ์‹œ๊ฐ„ ๋ฏธ๋ถ„์— ๋น„๋ก€ํ•˜๋Š” ๊ฐ์†Œ ๊ฒฝํ–ฅ์ด ๊ด€์ฐฐ๋  ๋•Œ๋งŒ ์†Œ์ •์˜ ๋ณด์ƒ์„ ๋ถ€์—ฌํ•œ๋‹ค. ์ด๋Š” ๋” ํฐ ๋ณด์ƒ์„ ๋ฐ›๊ธฐ์œ„ํ•ด ์—์ด์ „ํŠธ๊ฐ€ ์‹œ์Šคํ…œ์„ ๋ฐ”๋กœ ๋ฐœ์‚ฐ์‹œ์ผœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์กฐ๊ธฐ ์ข…๋ฃŒ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ์Œ์˜ ๋ณด์ƒ์„ ์ค„์ด๋Š” ๋™์ž‘์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์ค‘์น˜ $w_{1}, w_{2}, w_{\dot{e}}, w_{prog}> 0$๋Š” ์ƒํ˜ธ ๊ท ํ˜•์„ ์กฐ์ •ํ•˜๋ฉฐ ๋” ์ค‘์š”ํ•˜๊ฒŒ ๊ณ ๋ คํ•  ์˜ค์ฐจ์— ๋Œ€ํ•˜์—ฌ ๊ฐ•ํ•œ ํŽ˜๋„ํ‹ฐ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค.

์ตœ์ข…์ ์œผ๋กœ ๋ณด์ƒ๊ฐ’์€ ์—ํ”ผ์†Œ๋“œ๊ธธ์ด $H$์— ๋Œ€ํ•œ ํ‰๊ท ํ˜• ์ •๊ทœํ™”๋กœ ๊ธธ์ด ์˜์กด์„ฑ์„ ์ค„์ด๊ฒŒ ๋œ๋‹ค. ์‹ (15)์€ ๋ณด์ƒ๊ฐ’์ด๋‹ค.

(15)
$r_{t}=\dfrac{1}{H}r_{step, t}$

๊ทธ๋ฆผ 4๋Š” ์ด๋ ‡๊ฒŒ ์„ค๊ณ„๋œ ์›์‹œ๋ณด์ƒ $r_{step}$์˜ 3์ฐจ์› ํ‘œ๋ฉด๋„ ์˜ˆ์‹œ๋ฅผ ๊ทธ๋ฆผ 5๋Š” ๊ทธ ํžˆํŠธ๋งต์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.

๊ทธ๋ฆผ 4. ์›์‹œ ๋ณด์ƒํ•จ์ˆ˜์˜ 3์ฐจ์› ํ‘œ๋ฉด๋„

Fig. 4. 3D surface of the raw reward function

../../Resources/kiee/KIEE.2026.75.2.408/fig4.png

๊ทธ๋ฆผ 5. ์›์‹œ ๋ณด์ƒํ•จ์ˆ˜์˜ ํžˆํŠธ๋งต

Fig. 5. Heatmap of the raw reward function

../../Resources/kiee/KIEE.2026.75.2.408/fig5.png

์—์ด์ „ํŠธ๋Š” ๋ณด์ƒ์˜ ๋ˆ„์ ํ•ฉ ์‹ (16) $J$๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์ •์ฑ…์„ ํ•™์Šตํ•˜๊ฒŒ ๋œ๋‹ค.

(16)
$J =\sum_{t=0}^{H-1}\gamma^{k}r_{k}$

์—ฌ๊ธฐ์„œ $\gamma\in(0, 1)$์€ ํ• ์ธ์œจ์ด๋‹ค, ๋˜ํ•œ ๋งˆ์ง€๋ง‰์œผ๋กœ ์‹ ๋ขฐ๊ตฌ๊ฐ„ ๋ฐ–์˜ ํฐ ์˜ค์ฐจ๋Š” ์กฐ๊ธฐ์ข…๋ฃŒ์™€ ํ•จ๊ป˜ ๊ฐ•ํ•œ ํŽ˜๋„ํ‹ฐ๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ฌด์˜๋ฏธํ•œ ํ•™์Šต์„ ์ค„์ด๊ณ  ๋น ๋ฅธ ํ•™์Šต์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค.

(17)
$\text{if } |e| > e_{te}, r_{t}=r_{t}-\rho$

์—ฌ๊ธฐ์„œ $e_{te}> 0$์€ ์—ํ”ผ์†Œ๋“œ ์กฐ๊ธฐ ์ข…๋ฃŒ ์—๋Ÿฌ์ด๊ณ  $\rho > 0$์€ ์กฐ๊ธฐ ์ข…๋ฃŒ์‹œ ์ถ”๊ฐ€๋  ํŽ˜๋„ํ‹ฐ์ด๋‹ค. ์ด๋Š” ๋ช…๋ฐฑํ•œ ๋ฐœ์‚ฐ ๊ถค์ ์„ ๋น ๋ฅด๊ฒŒ ์ œ์™ธํ•˜๊ณ  ํ‘œ๋ณธ์˜ ํšจ์œจ๊ณผ ์•ˆ์ „์„ฑ์„ ๋†’์ธ๋‹ค.

4. ์‹œ๋ฎฌ๋ ˆ์ด์…˜

์ œ์•ˆ๋œ SS-PID ์˜จ๋ผ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์กฐ์ • ๊ธฐ๋ฒ•์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด MATLAB/Simulink์—์„œ ํ•™์Šต ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค.

์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์‚ฌ์šฉ๋œ ๋ชจํ„ฐ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” Maxon์‚ฌ์˜ BLDC ๋ชจํ„ฐ EC45 24 V 150 W๋ฅผ ๊ธฐ์ค€์œผ๋กœ 0.236 $kg$์˜ ์งˆ๋Ÿ‰๊ณผ 0.1$m$ ์˜ ๋ฐ˜์ง€๋ฆ„์„ ๊ฐ€์ง€๋Š” ๊ท ์งˆ์›ํŒ์„ ์ถ”๊ฐ€ํ•˜์˜€์œผ๋ฉฐ ๋ชจํ„ฐ์˜ ์ดˆ๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ํ‘œ 1๊ณผ ๊ฐ™๋‹ค.

๊ฐ•ํ™”ํ•™์Šต ํ•™์Šต์ค‘์—๋Š” ๋ชจํ„ฐ์˜ ์—ดํ™”๋กœ ์ธํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ๋ณ€ํ™”๊ฐ€ ์žˆ์„ ๋•Œ์˜ ์˜ค์ฐจ ์ตœ์†Œํ™”๋ฅผ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด ์—ํ”ผ์†Œ๋“œ๋งˆ๋‹ค ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ $R\in[R_{0}, 1.5R_{0}]$, $L\in[L_{0}, 1.2L_{0}]$, $K_{t}\in[K_{t0}, 1.1K_{t0}]$, $K_{e}\in[K_{e0}, 1.1K_{e0}]$, $J\in[J_{0}, 1.1J_{0}]$, $B\in[B_{0}, 1.6B_{0}]$ ๋ฒ”์œ„์— ๋งž๊ฒŒ ๊ท ๋“ฑ๋ถ„ํฌ๋กœ ์ดˆ๊ธฐํ™”ํ•˜์—ฌ ํ•™์Šตํ•˜์˜€๋‹ค.

SS-PID์˜ ์ดˆ๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ํ‘œ 2์— ์ œ์‹œ๋˜์–ด ์žˆ์œผ๋ฉฐ PID ๊ณ„์ˆ˜๋Š” MATLAB PID Tuner๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ตฌํ•˜์˜€์œผ๋ฉฐ ๊ด€์ธก๊ธฐ ์ด๋“์€ PID์™€ ๋™์ผํ•œ ๊ทน์ ์„ ๊ฐ€์ง€๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค [7].

ํ‘œ 1. BLDC ๋ชจํ„ฐ ์ดˆ๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ

Table 1. BLDC motor initial parameters

ํ•ญ๋ชฉ ๊ธฐํ˜ธ ๊ฐ’ ๋‹จ์œ„
์ƒ์ €ํ•ญ $R_{0}$ 0.468 ohm
์ƒ์ธ๋•ํ„ด์Šค $L_{0}$ $137.5\times 10^{-6}$ H
ํ† ํฌ์ƒ์ˆ˜ $K_{t0}$ $37.1\times 10^{-3}$ $N\bullet m/A$
์—ญ๊ธฐ์ „๋ ฅ ์ƒ์ˆ˜ $K_{e0}$ $37.1\times 10^{-3}$ $V\bullet s/rad$
์งˆ๋Ÿ‰๊ด€์„ฑ $J_{0}$ $1.19\times 10^{-3}$ $kg\bullet m^{2}$
์ ์„ฑ ๋งˆ์ฐฐ $B_{0}$ $2.25\times 10^{-6}$ $N\bullet m\bullet s/rad$

ํ‘œ 2. SS-PID ์ดˆ๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ

Table 2. SS-PID initial parameters

ํ•ญ๋ชฉ ๊ธฐํ˜ธ ๊ฐ’
๋น„๋ก€ $K_{p0}$ $6.50\times 10^{-2}$
์ ๋ถ„ $K_{i0}$ $2.0\times 10^{-1}$
๋ฏธ๋ถ„ $K_{d0}$ $1.69\times 10^{-3}$
๋ฏธ๋ถ„ํ•„ํ„ฐ $N_{0}$ 7.84
$T_{d}= K_{d0}/K_{p0}$ $T_{d}$ 0.026
$W_{o}= 2N_{0}/T_{d}$ $W_{o}$ 603.63
๊ด€์ธก๊ธฐ ์ด๋“1 $\beta_{1, 0}$ $3.64\times 10^{5}$
๊ด€์ธก๊ธฐ ์ด๋“2 $\beta_{2, 0}$ $1.20\times 10^{3}$

๋˜ํ•œ ์•ก์…˜ํ•จ์ˆ˜, ๋ณด์ƒํ•จ์ˆ˜, ๊ฐ•ํ™”ํ•™์Šต์˜ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ๊ฐ๊ฐ ํ‘œ 3, ํ‘œ 4, ํ‘œ 5์— ์ œ์‹œ๋˜์–ด ์žˆ์œผ๋ฉฐ ๋ชจ๋“  ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ๊ฒฝํ—˜์  ๋ฐฉ๋ฒ•์œผ๋กœ ์„ค์ •๋˜์—ˆ๋‹ค.

ํ‘œ 3. ์•ก์…˜ํ•จ์ˆ˜ ํŒŒ๋ผ๋ฏธํ„ฐ

Table 3. Action function parameters

ํ•ญ๋ชฉ ๊ธฐํ˜ธ ๊ฐ’
์Šค์ผ€์ผ ์ด๋“ $\alpha$ 0.1
์ด๋“ ์ƒํƒœ ํฌํ™” $\lambda_{p}, \lambda_{i}, \lambda_{d}$ 2.0
๊ด€์ธก๊ธฐ ์ƒํƒœ ํฌํ™” $\lambda_{\beta 1}, \lambda_{\beta 2}$ 0.1

ํ‘œ 4. ๋ณด์ƒํ•จ์ˆ˜ ํŒŒ๋ผ๋ฏธํ„ฐ

Table 4. Reward function parameters

ํ•ญ๋ชฉ ๊ธฐํ˜ธ ๊ฐ’
์˜ค์ฐจ ์Šค์ผ€์ผ $E$ 100
์ƒ˜ํ”Œ๋ง ํƒ€์ž„ $\Delta t$ $1\times 10^{-3}$
ํฌํ™” ๊ธฐ์šธ๊ธฐ $\kappa$ 3.0
์˜ค์ฐจ ์ œ๊ณฑ ๊ฐ€์ค‘์น˜ $w_{2}$ 1.0
์ ˆ๋Œ€์˜ค์ฐจ ๊ฐ€์ค‘์น˜ $w_{1}$ 0.2
๊ธฐ์šธ๊ธฐ ๊ฐ€์ค‘์น˜ $w_{\dot{e}}$ 0.1
์ง„ํ–‰ ๋ณด๋„ˆ์Šค $k_{prog}$ 0.05
์กฐ๊ธฐ์ข…๋ฃŒ ์ž„๊ณ„ ์˜ค์ฐจ $e_{te}$ 3.0
์ข…๋ฃŒ ํŽ˜๋„ํ‹ฐ $\rho$ 1.0
ํ• ์ธ์œจ $\gamma$ 0.99

์•ก์…˜ํ•จ์ˆ˜์˜ ์Šค์ผ€์ผ ์ด๋“์€ ์ œ์–ด๊ธฐ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ๋ณ€ํ™”์†๋„๋ฅผ ์ œํ•œํ•˜๋ฉฐ ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๋ณ€ํ•˜์ง€ ์•Š๋„๋ก ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ ์ด๋“ ์ƒํƒœ ํฌํ™”์˜ ๊ฒฝ์šฐ ํฐ ๋ฒ”์œ„์˜ ๋ณ€ํ™”์—๋„ ๋ฐœ์‚ฐํ•˜์ง€ ์•Š์ง€๋งŒ ๊ด€์ธก๊ธฐ ์ƒํƒœ ํฌํ™”์˜ ๊ฒฝ์šฐ ๊ฐ’์ด ๋„ˆ๋ฌด ์ปค์ง€๋ฉด ๊ณ ์ฃผํŒŒ ์‘๋‹ต์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋˜๋Š” ์ œ์–ด๊ธฐ์˜ ์ƒ˜ํ”Œ๋งํƒ€์ž„์„ ์ค„์—ฌ์•ผ ํ•˜๋ฉฐ ๊ทธ๋กœ ์ธํ•ด ์ œ์–ด๊ธฐ์˜ ์‹ค์‹œ๊ฐ„์„ฑ ๋˜๋Š” ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํƒ€์ž„์ด ๋Š˜์–ด๋‚˜๋ฉฐ ๋„ˆ๋ฌด ์ž‘์•„์งˆ ๊ฒฝ์šฐ ๊ธฐ์กด์˜ PID์ œ์–ด๊ธฐ์˜ ์‘๋‹ต์— ๋”ฐ๋ผ๊ฐ€์ง€ ๋ชปํ•˜์—ฌ ๋ฐœ์‚ฐํ•  ์ˆ˜ ์žˆ์–ด ์ ์ ˆํ•œ ๊ฐ’์œผ๋กœ ์ œํ•œ์„ ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์„ ์ •์— ๋”ฐ๋ผ ์—์ด์ „ํŠธ์˜ ์ •์ฑ… ํ•™์Šต๊ณผ์ •์—์„œ ํ•™์Šต ์†๋„์™€ ์•ˆ์ •์„ฑ์— ์˜ํ–ฅ์ด ์žˆ์ง€๋งŒ ํ•™์Šต์ด ์•ˆ์ •์ ์œผ๋กœ ์™„๋ฃŒ๊ฐ€ ๋œ ๊ฒฝ์šฐ ์•ˆ์ •์ ์œผ๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค.

ํ‘œ 5. ๊ฐ•ํ™”ํ•™์Šต ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ

Table 5. Reinforcement Learning Hyperparameters

ํ•ญ๋ชฉ ๊ฐ’ ๋‹จ์œ„
์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ๊ฐ„ 50 s
์ƒ˜ํ”Œ๋ง ํƒ€์ž„ $1\times 10^{-3}$ s
ํƒ€๊นƒ ํ‰ํ™œ ๊ณ„์ˆ˜ $1\times 10^{-3}$ -
๊ฒฝํ—˜ ๋ฒ„ํผ $1\times 10^{6}$ -
๋ฏธ๋‹ˆ๋ฐฐ์น˜ ํฌ๊ธฐ 64 -

๊ทธ๋ฆผ 6์€ ์„ค๊ณ„๋œ ๊ฐ•ํ™”ํ•™์Šต์—์„œ ํ•™์Šต๊ณผ์ •์—์„œ ๊ณ ๋ ค๋œ 50์ดˆ ์ดํ›„์—์„œ์˜ ๋™์ž‘์„ ๋ณผ ์ˆ˜ ์žˆ๋„๋ก 100์ดˆ๊ฐ„์˜ ๊ธฐ์กด ์ดˆ๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” BLDC๋ชจํ„ฐ์—์„œ์˜ ์‘๋‹ต ๋น„๊ต๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์—ดํ™”๊ฐ€ ์ง„ํ–‰๋˜์ง€ ์•Š์•„ ๊ธฐ์กด์˜ ํŠœ๋‹์ด ๋˜์ง€ ์•Š์€ SS-PID๋กœ ์ œ์–ด๋˜๋Š” BLDC๋ชจํ„ฐ์˜ ์ œ์–ด ์‘๋‹ต๋„ ์•ˆ์ •์ ์ด๋ฉฐ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•˜๋Š” ๊ฐ•ํ™”ํ•™์Šต ์กฐ์ • SS-PID๋Š” ์ฒ˜์Œ์—๋Š” ๋™์ผํ•œ ์‘๋‹ตํŠน์„ฑ์„ ๋ณด์ด์ง€๋งŒ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์˜จ๋ผ์ธ์œผ๋กœ ์กฐ์ •์ด ์ง„ํ–‰๋˜์–ด ๊ทธ ์‘๋‹ต์ด ๊ธฐ์กด์˜ SS-PID์™€๋Š” ๋‹ค๋ฅด๊ฒŒ ์ตœ์ ํ™” ๋˜๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋•Œ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์กด์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ณด๋‹ค ๋” ๊ณต๊ฒฉ์ ์œผ๋กœ ์ œ์–ด๋˜๊ณ  ์žˆ์Œ์„ ๋ณด์ด๊ณ  ๊ทธ๋กœ ์ธํ•ด ์˜ค๋ฒ„์ŠˆํŠธ๋Š” ๋” ์ปค์ง€์ง€๋งŒ, ์ •์ฐฉ์‹œ๊ฐ„์€ ์งง์•„์ง€๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค.

๊ทธ๋ฆผ 6. ์ •์ƒ ํ”Œ๋žœํŠธ์—์„œ์˜ ์†๋„ ์ถ”์ข… ์‘๋‹ต ๋น„๊ต (๊ธฐ์กด SS-PID vs ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ์กฐ์ • SS-PID)

Fig. 6. Speed tracking responses under nominal plant (Conventional SS-PID vs RL-tuned SS-PID)

../../Resources/kiee/KIEE.2026.75.2.408/fig6.png

๊ทธ๋ฆผ 7. ์ •์ƒ ํ”Œ๋žœํŠธ์—์„œ์˜ ์ œ์–ด ์„ฑ๋Šฅ ๋น„๊ต: ISE ์ง€์ˆ˜

Fig. 7. Control performance comparison in nominal plant: ISE index

../../Resources/kiee/KIEE.2026.75.2.408/fig7.png

๊ทธ๋ฆผ 7์€ ์ œ์–ด๊ธฐ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ๊ฐ ์ œ์–ด๊ฒฐ๊ณผ์˜ ISE(Integral of Squared Error)๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ๊ฐ•ํ™”ํ•™์Šต ์กฐ์ • SS-PID๋Š” ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์กฐ์ •ํ•ด ๊ธฐ์กด์˜ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ๋น„๊ตํ•˜์—ฌ 100์ดˆ๊ฐ„ $105\times 10^{3}[rad]$๋งŒํผ์˜ ISE ์ฐจ์ด๋ฅผ ๋ณด์ด๋ฉฐ, ํ•œ๋ฒˆ์˜ ์Šคํƒญ์— $6.48\times 10^{3}[rad]$์˜ ์˜ค์ฐจ๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ธฐ์กด์˜ ์ œ์–ด๊ธฐ์— ๋น„ํ•˜์—ฌ $3.29\times 10^{3}[rad]$์˜ ISE๋กœ ์šฐ์ˆ˜ํ•œ ์ถ”์ข… ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค.

์ด๋Ÿฐ ์˜จ๋ผ์ธ์œผ๋กœ ์ œ์–ด๊ธฐ๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๊ธฐ๋ฒ•์€ ํŠนํžˆ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์—ดํ™”๋กœ ์ธํ•ด ๋ณ€ํ•ด ๊ทธ ์„ฑ๋Šฅ์ด ๋–จ์–ด์กŒ์„ ๋•Œ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 8. ์—ดํ™” ํ”Œ๋žœํŠธ์—์„œ์˜ ์†๋„ ์ถ”์ข… ์‘๋‹ต ๋น„๊ต (๊ธฐ์กด SS-PID vs ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ์กฐ์ • SS-PID)

Fig. 8. Speed tracking responses under degraded plant parameters (Conventional SS-PID vs RL-tuned SS-PID)

../../Resources/kiee/KIEE.2026.75.2.408/fig8.png

๊ทธ๋ฆผ 9. ์—ดํ™” ํ”Œ๋žœํŠธ์—์„œ์˜ ์ œ์–ด ์„ฑ๋Šฅ ๋น„๊ต: ISE ์ง€์ˆ˜

Fig. 9. Control performance comparison in degraded plant: ISE index

../../Resources/kiee/KIEE.2026.75.2.408/fig9.png

๊ทธ๋ฆผ 8์€ ์—ดํ™”๋˜์–ด ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋ณ€ํ•˜์˜€์„ ๋•Œ ๊ธฐ์กด SS-PID์˜ ์‘๋‹ต๊ณผ ๊ฐ•ํ™”ํ•™์Šต ์กฐ์ • SS-PID์˜ ์‘๋‹ต์„ ๋น„๊ตํ•œ ๊ฒƒ์ด๋‹ค. SS-PID์˜ ์ œ์–ด ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์—ดํ™” ์ด์ „์˜ ์‹œ์Šคํ…œ์— ๋งž์ถฐ ์กฐ์ •์ด ๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ๋ณ€ํ™”๋กœ ์ธํ•ด ๋” ๋†’์€ ์˜ค๋ฒ„์ŠˆํŠธ์™€ ์ •์ฐฉ์‹œ๊ฐ„์„ ๋ณด์ธ๋‹ค. ๊ฐ•ํ™”ํ•™์Šต ์กฐ์ • SS-PID์˜ ๊ฒฝ์šฐ ๋™์ผํ•˜๊ฒŒ ์ดˆ๊ธฐ์—๋Š” ๋†’์€ ์˜ค๋ฒ„์ŠˆํŠธ์™€ ์ •์ฐฉ์‹œ๊ฐ„์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์ง€๋งŒ ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ์ตœ์ ํ™”๋˜๋ฉฐ ๊ธฐ์กด SS-PID์™€ ๋น„๊ตํ•˜์—ฌ ๋” ๋‚ฎ์€ ์˜ค๋ฒ„์ŠˆํŠธ์™€ ์ •์ฐฉ์‹œ๊ฐ„์„ ๋ณด์—ฌ์ฃผ๋ฉฐ ์•ˆ์ •์ ์œผ๋กœ ๊ธฐ์ค€์‹ ํ˜ธ๋ฅผ ์ถ”์ข…ํ•˜๊ณ  ์žˆ๋‹ค.

๋™์ผํ•˜๊ฒŒ ๊ทธ๋ฆผ 9๋Š” ์ œ์–ด๊ธฐ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ๊ฐ ์ œ์–ด ๊ฒฐ๊ณผ์˜ ISE๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ 100์ดˆ๊ฐ„ ๊ธฐ์กด์˜ ์ œ์–ด๊ธฐ๋Š” $247\times 10^{3}[rad]$๋งŒํผ์˜ ISE๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์— ๋น„ํ•˜์—ฌ ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ๋Š” $116\times 10^{3}[rad]$์˜ ISE๋ฅผ ๋ณด์ด๋ฉฐ ๊ทธ ์ฐจ์ด๋Š” $131\times 10^{3}[rad]$์ด๋‹ค. ๋˜ํ•œ ์ตœ์ข…์ ์œผ๋กœ ํ•˜๋‚˜์˜ ์Šคํƒญ๋‹น ISE๋Š” $7.49\times 10^{3}[rad]$์ธ ๊ธฐ์กด์˜ ์ œ์–ด๊ธฐ์— ๋น„ํ•˜์—ฌ ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ๋Š” $3.26\times 10^{3}[rad]$์œผ๋กœ ๋‘๋ฐฐ ์ˆ˜์ค€์˜ ์ œ์–ด์ถ”์ข… ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ์ด๋Š” ์ฒซ ๋ฒˆ์งธ ์Šคํƒญ์—์„œ ๊ฐ๊ฐ ์Šคํƒญ๋‹น ISE๊ฐ€ $7.41\times 10^{3}[rad]$, $6.71\times 10^{3}[rad]$์ธ๊ฒƒ์— ๋น„ํ•˜์—ฌ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ์กฐ์ •๋œ SS-PID๋Š” ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ์•ˆ์ •์ ์œผ๋กœ ์กฐ์ •๋˜์–ด ์˜ค์ฐจ๋ฅผ ์ค„์ด๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

5. ์‹ค ํ—˜

์ œ์•ˆ๋œ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ SS-PID ์ œ์–ด๊ธฐ์˜ ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด Speedgoat Performance ์žฅ๋น„๋ฅผ ์ด์šฉํ•œ HILS(Hardware-In-the-Loop Simulation) ํ™˜๊ฒฝ์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๋ณธ ์‹คํ—˜์€ MATLAB/Simulink Real-Time ํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ, Simulink Coder๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ค๊ณ„๋œ ์ œ์–ด๊ธฐ๋ฅผ ์‹ค์‹œ๊ฐ„ ์‹คํ–‰ ์ฝ”๋“œ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๋™์ผํ•œ Speedgoat ํ•˜๋“œ์›จ์–ด์—์„œ ๋™์ž‘์‹œ์ผฐ๋‹ค. ์ œ์–ด๊ธฐ ๋ฐ ํ”Œ๋žœํŠธ ๋ชจ๋ธ์€ ๋ชจ๋‘ ์‹ค์‹œ๊ฐ„ ์กฐ๊ฑด์—์„œ ์—ฐ๋™๋˜๋„๋ก ๊ตฌ์„ฑํ•˜์˜€๋‹ค.

์‹คํ—˜์— ์‚ฌ์šฉ๋œ Speedgoat Performance ์žฅ๋น„์˜ ๊ธฐ๋ณธ ์‚ฌ์–‘์€ CPU๋Š” Intel Core 3.1 GHz(4-core)์ด๋ฉฐ, ๋ฉ”๋ชจ๋ฆฌ๋Š” 8 GB์ด๋‹ค. ์šด์˜์ฒด์ œ๋Š” Simulink Real-Time์ด๋‹ค. ์‚ฌ์šฉ๋œ ํ†ต์‹  ๋ชจ๋“ˆ์€ IO133 I/O ๋ชจ๋“ˆ์œผ๋กœ 16์ฑ„๋„ A/D ์ž…๋ ฅ(16-bit, ยฑ10 V, 200 kSPS), 8์ฑ„๋„ D/A ์ถœ๋ ฅ(16-bit, ยฑ10 V, ์ •์ฐฉ์‹œ๊ฐ„ 10 ยตs)์„ ์ œ๊ณตํ•œ๋‹ค.

๊ทธ๋ฆผ 10. Speedgoat Performance ๋ฐ IO133 ๋ชจ๋“ˆ์„ ์ด์šฉํ•œ HILS ์‹คํ—˜ ๊ตฌ์„ฑ

Fig. 10. HILS experimental setup using Speedgoat Performance and IO133 module.

../../Resources/kiee/KIEE.2026.75.2.408/fig10.png

์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ํ•™์Šต๋œ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ SS-PID ์ œ์–ด๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋™์ผํ•˜๊ฒŒ ์ ์šฉํ•˜๊ณ , IO133 ๋ชจ๋“ˆ์„ ํ†ตํ•ด ์ œ์–ด ์ž…๋ ฅ ์‹ ํ˜ธ๋ฅผ ์‹ค์‹œ๊ฐ„ ์ž…์ถœ๋ ฅํ•˜์˜€๋‹ค. ์ƒ˜ํ”Œ๋ง ์ฃผ๊ธฐ๋Š” 1 ms๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, DDPG ์ •์ฑ…์— ๋”ฐ๋ผ ์ œ์–ด๊ธฐ์˜ ์ด๋“์„ ์˜จ๋ผ์ธ์œผ๋กœ ์กฐ์ •ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 11. HILS ์—ดํ™” ํ”Œ๋žœํŠธ์—์„œ์˜ ์†๋„ ์ถ”์ข… ์‘๋‹ต

Fig. 11. Speed tracking response in HILS deterioration plants

../../Resources/kiee/KIEE.2026.75.2.408/fig11.png

์—ดํ™”๋œ ํŒŒ๋ผ๋ฏธํ„ฐ ์กฐ๊ฑด์—์„œ์˜ HILS ์‘๋‹ต ๊ฒฐ๊ณผ๋Š” ๊ทธ๋ฆผ 11๊ณผ ๊ฐ™์œผ๋ฉฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์™€ ์œ ์‚ฌํ•œ ์ถ”์ข… ํŠน์„ฑ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ ISE ์„ฑ๋Šฅ์€ ๊ทธ๋ฆผ 12์— ๋‚˜ํƒ€๋‚˜ ์žˆ์œผ๋ฉฐ 100์ดˆ ๊ตฌ๊ฐ„์—์„œ ์ธก์ •๋œ ISE ๊ฐ’์€ $117\times 10^{3}[rad]$๋กœ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋Œ€๋น„ ์•ฝ $1\times 10^{3}[rad]$ ์ˆ˜์ค€์˜ ์ฐจ์ด๋งŒ ์กด์žฌํ•˜์˜€๋‹ค. ์ด๋Š” ์ „์ฒด ๋น„์œจ๋กœ ๋ณผ ๋•Œ ๋ฏธ๋ฏธํ•œ ์ฐจ์ด์— ํ•ด๋‹นํ•˜๋ฉฐ, ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ๊ฐ€ ์‹ค์ œ ํ•˜๋“œ์›จ์–ด ํ™˜๊ฒฝ์—์„œ๋„ ์œ ์‚ฌํ•œ ์†๋„ ์ถ”์ข… ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ HILS ํ™˜๊ฒฝ์—์„œ๋„ ์ •์ฑ… ๊ฐฑ์‹  ๋ฐ ํŒŒ๋ผ๋ฏธํ„ฐ ์กฐ์ •์ด ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ด๋ฃจ์–ด์ ธ, ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์‹ค์‹œ๊ฐ„ ํ•™์Šต ๋ฐ ์˜จ๋ผ์ธ ํŠœ๋‹์ด ์ถฉ๋ถ„ํžˆ ๊ฐ€๋Šฅํ•จ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 12. HILS ์—ดํ™” ํ”Œ๋žœํŠธ์—์„œ์˜ ์ œ์–ด ์„ฑ๋Šฅ : ISE ์ง€์ˆ˜

Fig. 12. Control Performance in Degraded Plant under HILS: ISE Index

../../Resources/kiee/KIEE.2026.75.2.408/fig12.png

6. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ๋Š” BLDC ๋ชจํ„ฐ ์ œ์–ด์—์„œ ๋ชจํ„ฐ์˜ ์„ผ์„œ ์žก์Œ๊ณผ ์—ดํ™”๋กœ ์ธํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€ํ™”์— ๊ธฐ์ธํ•œ ์žฅ๊ธฐ ์„ฑ๋Šฅ ์ €ํ•˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, SS-PID ์ œ์–ด๊ธฐ์˜ ์žฅ์ ๊ณผ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ์˜จ๋ผ์ธ ์กฐ์ •์„ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ์ œ์–ด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ Simulink ํ™˜๊ฒฝ์—์„œ DDPG ์—์ด์ „ํŠธ๋ฅผ ์ด์šฉํ•˜์—ฌ SS-PID์˜ PID ์ด๋“ ๋ฐ ๊ด€์ธก๊ธฐ ์ด๋“์„ ์—ฐ์†์ ์œผ๋กœ ์กฐ์ •ํ•จ์œผ๋กœ์จ, ์ดˆ๊ธฐ ํŒŒ๋ผ๋ฏธํ„ฐ์— ๊ณ ์ •๋œ ์ „ํ†ต์  SS-PID์™€ ๋‹ฌ๋ฆฌ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋Š” ์‹œ์Šคํ…œ ํŒŒ๋ผ๋ฏธํ„ฐ์— ์ ์‘ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ, ์ œ์•ˆ๋œ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ SS-PID๋Š” ์ •์ƒ ์กฐ๊ฑด๋ฟ ์•„๋‹ˆ๋ผ ์—ดํ™”๋œ ํŒŒ๋ผ๋ฏธํ„ฐ ์กฐ๊ฑด์—์„œ๋„ ๊ธฐ์กด SS-PID๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์ถ”์ข… ์„ฑ๋Šฅ๊ณผ ๋‚ฎ์€ ISE๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ์ด๋Š” ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์ด ์žฅ๊ธฐ๊ฐ„ ์šด์šฉ ํ™˜๊ฒฝ์—์„œ์˜ BLDC ๋ชจํ„ฐ ์ œ์–ด ์‹ ๋ขฐ์„ฑ์„ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ์—ฌ์ „ํžˆ ๊ฐ•ํ™”ํ•™์Šต ์—์ด์ „ํŠธ๊ฐ€ ํ•™์Šต ๊ณผ์ •์—์„œ ์‚ฐ์ถœํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์ „์—ญ์  ์ตœ์ ๊ฐ’ ๋˜๋Š” ์•ˆ์ •์„ฑ์„ ๋ณด์žฅํ•˜์ง€๋Š” ๋ชปํ•˜๋ฉฐ, ์ด๋Š” ์ด๋ก ์  ์ธก๋ฉด์—์„œ ์ œ์•ฝ์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค. ๋‘˜์งธ, ์—์ด์ „ํŠธ ํ•™์Šต์—๋Š” ์ƒ๋‹นํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ๊ฐ„๊ณผ ์—ฐ์‚ฐ ์ž์›์ด ์š”๊ตฌ๋˜๋ฉฐ, ์ด๋Š” ์‹ค์ œ ์‚ฐ์—… ์ ์šฉ ์‹œ ๋น„์šฉ์ƒ์Šน์˜ ์š”์ธ์œผ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋Ÿผ์—๋„ ์ œ์•ˆ๋œ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ SS-PID๋Š” ๊ธฐ์กด ์ œ์–ด๊ธฐ์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ณ  ์žฅ๊ธฐ๊ฐ„ ์šด์šฉ์—์„œ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์—ดํ™” ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํŠนํžˆ ์ „๊ธฐ์ž๋™์ฐจ์™€ ๊ฐ™์ด ๊ณ ์‹ ๋ขฐ์„ฑ์ด ์š”๊ตฌ๋˜๋Š” ์žฅ๊ธฐ ์šด์šฉ ๋ชจํ„ฐ ๊ตฌ๋™ ์‹œ์Šคํ…œ์—์„œ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์˜จ๋ผ์ธ์œผ๋กœ ์ œ์–ด๊ธฐ๋ฅผ ์ ์‘์ ์œผ๋กœ ๋ณด์ •ํ•˜์—ฌ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๋ฐฉ์ง€ํ•˜๋Š” ํ•ต์‹ฌ ๊ธฐ์ˆ ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ„์‚ฐ ๋น„์šฉ์„ ์ ˆ๊ฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ๋Ÿ‰ํ™” ํ•™์Šต ๊ตฌ์กฐ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋‹ค.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by Ministry of Education (No. 2021R1F1A1061732).

References

1 
J. Xuan, X. Wang, D. Lu, L. Wang, 2017, Research on the safety assessment of the brushless DC motor based on the gray model, Advances in Mechanical Engineering, Vol. 9, No. 3DOI
2 
M. Weigert, 2023, Analysis of Diagnostic Capabilities for Degradation of Brushless Direct Current Motors Depending on Varying Simulation Data, Vol. 4, No. 1DOI
3 
J. S. Park, J.-H. Choi, J. Lee, 2016, Compensation Method of Position Signal Error with Misaligned Hall-Effect Sensors of BLDC Motor, Journal of Electrical Engineering and Technology, Vol. 11, No. 4, pp. 889-897DOI
4 
M. Deepak, 2022, A Review of BLDC Motor: State of Art, Advanced Control Techniques, and Applications, IEEE Access, Vol. 10, pp. 1-1DOI
5 
K.-H. Chao, C.-T. Hsieh, X.-J. Chen, 2024, A Robust Controller Based on Extension Sliding Mode Theory for Brushless DC Motor Drives, Electronics, Vol. 13, No. 20DOI
6 
P. Ubare, D. Ingole, D. N. Sonawane, 2021, Nonlinear Model Predictive Control of BLDC Motor with State Estimation, IFAC-PapersOnLine, Vol. 54, No. 6, pp. 107-112DOI
7 
W. Tan, W. Han, J. Xu, 2022, State-Space PID: A Missing Link Between Classical and Modern Control, IEEE Access, Vol. 10, pp. 116540-116553DOI
8 
T. P. Lillicrap, 2016, Continuous control with deep reinforcement learningDOI
9 
X. Hao, 2025, Deep reinforcement learning enhanced PID control for hydraulic servo systems in injection molding machines, Sci Rep, Vol. 15, No. 1DOI
10 
J. A. van Niekerk, J. D. le Roux, I. K. Craig, 2025, Reinforcement learning based automatic tuning of PID controllers in multivariable grinding mill circuits, Control Engineering Practice, Vol. 165DOI
11 
S.-Y. Noh, C.-H. Kim, 2024, SS-PID Controller Design for Maglev Conveyor Systems Based on Loop Shaping Method, pp. 23-25Google Search
12 
S.-Y. Noh, C.-H. Kim, 2025, Design of Deep RL SS-PID Controller for Constrained BLDC Motor Drive, pp. 2652-2654Google Search
13 
A. R. A. Majid, 2024, Enhancing BLDC Motor Speed Control by Mitigating Bias with a Variation Model Filter, International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 15, No. 9Google Search
14 
Y. S. Park, 2016, Motor control DC, AC, BLDC motorsGoogle Search
15 
K. Ogata, 2010, Modern Control EngineeringGoogle Search
16 
Y. Ma, W. Zhu, M. G. Benton, J. Romagnoli, 2019, Continuous control of a polymerization system with deep reinforcement learning, Journal of Process Control, Vol. 75, pp. 40-47DOI
17 
S. J. D. Prince, 2024, Understanding Deep LearningGoogle Search

์ €์ž์†Œ๊ฐœ

๋…ธ์ˆ˜์˜(Soo-Young Noh)
../../Resources/kiee/KIEE.2026.75.2.408/au1.png

He received his B.S. degree in Electronic Engineering from Kangnam University, Korea, in 2024. He is currently pursuing an M.S. degree in Control Engineering at the same university, where he began his graduate studies in 2024. His research interests include optimal control, intelligent control, robust control, and control of time-delay systems, with applications to magnetic levitation and motor drive systems. E-mail : nsy@kangnam.ac.kr

๊น€์ฐฝํ˜„(Chang-Hyun Kim)
../../Resources/kiee/KIEE.2026.75.2.408/au2.png

He received the M.S. and Ph.D. degrees in Electrical Engineering from Hanyang University, Korea, in 2006 and 2015, respectively. From 2016 to 2021, he was an Assistant Professor at VISION College of Jeonju, Korea. Since 2021, he has been with Kangnam University, Korea, where he is currently an Associate Professor in the Department of Electronic Engineering. His research interests include robust control, model predictive control (MPC), machine learning, and their applications to magnetic levitation systems, autonomous mobile robots, and network congestion control. E-mail : chkim@kangnam.ac.kr