• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electrical and Electronic Engineering, Pai Chai University, Republic of Korea. E-mail : 2568602@pcu.ac.kr, chkim@pcu.ac.kr)



Sliding Mode Control, Constraint Satisfaction, Time-varying Sliding Mode, Model Predictive Control, Vehicle Control

1. ์„œ ๋ก 

ํ˜„๋Œ€ ์ œ์–ด ์‹œ์Šคํ…œ์€ ๋ณต์žก์„ฑ์˜ ์ฆ๊ฐ€์™€ ํ•จ๊ป˜ ๊ณ ์ •๋ฐ€๋„, ๊ฐ•์ธ์„ฑ (robustness), ๊ทธ๋ฆฌ๊ณ  ๋ฌผ๋ฆฌ์  ์ œ์•ฝ ์กฐ๊ฑด์˜ ์ค€์ˆ˜๋ผ๋Š” ๋‹ค๋ฉด์ ์ธ ์š”๊ตฌ์‚ฌํ•ญ์— ์ง๋ฉดํ•ด ์žˆ๋‹ค. ํŠนํžˆ ์ž์œจ ์ฃผํ–‰ ์ž๋™์ฐจ, ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ, ์ •๋ฐ€ ๊ณต์ • ์ œ์–ด์™€ ๊ฐ™์€ ์‘์šฉ ๋ถ„์•ผ์—์„œ๋Š” ์™ธ๋ถ€ ์™ธ๋ž€ (external disturbance)๊ณผ ๋ชจ๋ธ ๋ถˆํ™•์‹ค์„ฑ (model uncertainty)์ด ์กด์žฌํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ๋„ ์•ˆ์ •์ ์ธ ์ œ์–ด ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด (Sliding Mode Control, SMC)๋Š” ๋น„์„ ํ˜• ์ œ์–ด ์ด๋ก ์˜ ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ด๊ณ  ๊ฐ•๋ ฅํ•œ ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜๋กœ, ์ง€๋‚œ ์ˆ˜์‹ญ ๋…„๊ฐ„ ํ•™๊ณ„์™€ ์‚ฐ์—…๊ณ„์—์„œ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค [1- 4]. SMC์˜ ํ•ต์‹ฌ ์›๋ฆฌ๋Š” ์‹œ์Šคํ…œ์˜ ์ƒํƒœ (state)๊ฐ€ ์ƒํƒœ ๊ณต๊ฐ„ (state-space) ๋‚ด์— ๋ฏธ๋ฆฌ ์ •์˜๋œ ์ดˆํ‰๋ฉด (hyperplane), ์ฆ‰ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด (sliding surface)์— ๋„๋‹ฌํ•˜๋„๋ก ์œ ๋„ํ•˜๊ณ , ์ผ๋‹จ ๋„๋‹ฌํ•œ ํ›„์—๋Š” ์‹œ์Šคํ…œ์˜ ๋™์—ญํ•™์ด ์˜ค์ง ํ•ด๋‹น ํ‘œ๋ฉด์˜ ๊ธฐํ•˜ํ•™์  ํŠน์„ฑ์— ์˜ํ•ด ๊ฒฐ์ •๋˜๋„๋ก ๊ตฌ์†ํ•˜๋Š” ๊ฒƒ์ด๋‹ค [1]. ์ด ์ œ์–ด ๊ธฐ๋ฒ•์˜ ๊ฐ€์žฅ ํฐ ์žฅ์ ์€ ๋งค์นญ๋œ ๋ถˆํ™•์‹ค์„ฑ (matched uncertainty)์— ๋Œ€ํ•œ ์‹œ์Šคํ…œ์˜ ๋ถˆ๋ณ€์„ฑ (invariance)์— ์žˆ๋‹ค [1]. ์‹œ์Šคํ…œ์ด ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ (sliding mode)์— ์ง„์ž…ํ•˜์—ฌ ํ‘œ๋ฉด ์œ„๋ฅผ ๋ฏธ๋„๋Ÿฌ์ง€๋“ฏ ์ด๋™ํ•˜๋Š” ๋™์•ˆ, ์‹œ์Šคํ…œ์€ ์ œ์–ด ์ž…๋ ฅ ์ฑ„๋„๋กœ ๋“ค์–ด์˜ค๋Š” ์™ธ๋ถ€ ์™ธ๋ž€์ด๋‚˜ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€๋™์— ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š๊ณ  ์„ค๊ณ„์ž๊ฐ€ ์˜๋„ํ•œ ์ถ•์•ฝ๋œ ์ฐจ์› ๋™์—ญํ•™ (reduced-order dynamics)์„ ๋”ฐ๋ฅด๊ฒŒ ๋œ๋‹ค [2]. ์ด๋Ÿฌํ•œ ํŠน์„ฑ ๋•๋ถ„์— SMC๋Š” ์ •ํ™•ํ•œ ๋ชจ๋ธ๋ง์ด ์–ด๋ ต๊ฑฐ๋‚˜ ํ™˜๊ฒฝ ๋ณ€ํ™”๊ฐ€ ์‹ฌํ•œ ์‹œ์Šคํ…œ ์ œ์–ด์— ๋งค์šฐ ํšจ๊ณผ์ ์ธ ์†”๋ฃจ์…˜์œผ๋กœ ์ž๋ฆฌ ์žก์•˜๋‹ค. ๋˜ํ•œ, ์ œ์–ด ๋ฒ•์น™์˜ ์„ค๊ณ„๊ฐ€ ๋น„๊ต์  ์ง๊ด€์ ์ด๋ฉฐ, ์‹œ์Šคํ…œ์˜ ์ฐจ์ˆ˜๋ฅผ ๋‚ฎ์ถฐ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์  ๋˜ํ•œ SMC๊ฐ€ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์ด์œ ์ด๋‹ค.

์ „ํ†ต์ ์ธ SMC๊ฐ€ ๊ฐ€์ง„ ์ด๋ก ์  ๊ฐ•์ธ์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์‹ค์ œ ์‘์šฉ ๋‹จ๊ณ„์—์„œ๋Š” ๋ช‡ ๊ฐ€์ง€ ๋ณธ์งˆ์ ์ธ ๋ฌธ์ œ์ ์ด ์ œ๊ธฐ๋˜์–ด ์™”๋‹ค. ์ฒซ์งธ๋Š” ์ฑ„ํ„ฐ๋ง (chattering) ํ˜„์ƒ์ด๋‹ค. ์ด์ƒ์ ์ธ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ๋Š” ๋ฌดํ•œํžˆ ๋น ๋ฅธ ์Šค์œ„์นญ ์ฃผํŒŒ์ˆ˜๋ฅผ ์š”๊ตฌํ•˜์ง€๋งŒ, ์‹ค์ œ ํ•˜๋“œ์›จ์–ด (์•ก์ถ”์—์ดํ„ฐ, ์„ผ์„œ, ๋งˆ์ดํฌ๋กœํ”„๋กœ์„ธ์„œ)๋Š” ๋ฌผ๋ฆฌ์  ํ•œ๊ณ„๋กœ ์ธํ•ด ์œ ํ•œํ•œ ์Šค์œ„์นญ ์†๋„๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ด๋กœ ์ธํ•ด ์‹œ์Šคํ…œ ์ƒํƒœ๊ฐ€ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์— ์™„๋ฒฝํ•˜๊ฒŒ ๊ณ ์ •๋˜์ง€ ๋ชปํ•˜๊ณ  ํ‘œ๋ฉด ์ฃผ๋ณ€์„ ๊ณ ์ฃผํŒŒ์ˆ˜๋กœ ์ง„๋™ํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋Š” ์•ก์ถ”์—์ดํ„ฐ์˜ ๋งˆ๋ชจ๋ฅผ ๊ฐ€์†ํ™”ํ•˜๊ณ  ์ œ์–ด ์ •๋ฐ€๋„๋ฅผ ์ €ํ•˜์‹œํ‚ค๋ฉฐ ์‹œ์Šคํ…œ์— ์›์น˜ ์•Š๋Š” ๊ณ ์ฃผํŒŒ ๋™์—ญํ•™์„ ์œ ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ๋„๋‹ฌ ๋‹จ๊ณ„ (reaching phase)์—์„œ์˜ ๊ฐ•์ธ์„ฑ ๋ถ€์žฌ์ด๋‹ค [5]. ์ „ํ†ต์ ์ธ SMC๋Š” ์‹œ์Šคํ…œ ์ƒํƒœ๊ฐ€ ์ดˆ๊ธฐ ์œ„์น˜์—์„œ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์— ๋„๋‹ฌํ•˜๊ธฐ๊นŒ์ง€ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„, ์ฆ‰ ๋„๋‹ฌ ๋‹จ๊ณ„ ๋™์•ˆ์—๋Š” ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ํŠน์œ ์˜ ๋ถˆ๋ณ€์„ฑ์ด ๋ณด์žฅ๋˜์ง€ ์•Š๋Š”๋‹ค [6]. ์ด ๊ตฌ๊ฐ„์—์„œ๋Š” ์™ธ๋ถ€ ์™ธ๋ž€์— ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๊ณผ๋„ ์‘๋‹ต ์„ฑ๋Šฅ์„ ์ €ํ•˜์‹œํ‚ค๋Š” ์š”์ธ์ด ๋œ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ ๋ถ„ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด (integral SMC) ๋“ฑ์ด ์ œ์•ˆ๋˜์—ˆ์œผ๋‚˜ [5- 7], ์ด๋Š” ์ œ์–ด๊ธฐ ๊ตฌ์กฐ๋ฅผ ๋ณต์žกํ•˜๊ฒŒ ๋งŒ๋“ค๊ฑฐ๋‚˜ ์˜ค๋ฒ„์ŠˆํŠธ (overshoot) ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์…‹์งธ, ์ œ์•ฝ ์กฐ๊ฑด (constraints) ์ฒ˜๋ฆฌ์˜ ์–ด๋ ค์›€์ด๋‹ค. ์‹ค์ œ ์‚ฐ์—… ๊ณต์ •์ด๋‚˜ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰๊ณผ ๊ฐ™์€ ์‹œ์Šคํ…œ์—์„œ๋Š” ์ž…๋ ฅ ์ „์••์˜ ํ•œ๊ณ„, ์กฐํ–ฅ๊ฐ์˜ ๋ฌผ๋ฆฌ์  ๋ฒ”์œ„, ์•ˆ์ „์„ ์œ„ํ•œ ์ƒํƒœ ๋ณ€์ˆ˜์˜ ์ œํ•œ ๋“ฑ ๋‹ค์–‘ํ•œ ์ œ์•ฝ ์กฐ๊ฑด์ด ์กด์žฌํ•œ๋‹ค. ์ „ํ†ต์ ์ธ SMC ์„ค๊ณ„ ๋ฐฉ์‹์€ ์ด๋Ÿฌํ•œ ์ œ์•ฝ ์กฐ๊ฑด์„ ๋ช…์‹œ์ ์œผ๋กœ ๊ณ ๋ คํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์ œ์–ด ์ž…๋ ฅ์ด ํฌํ™” (saturation)๋  ๊ฒฝ์šฐ ์Šฌ๋ผ์ด๋”ฉ ์กฐ๊ฑด์ด ๊นจ์งˆ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ์„ ์œ„ํ˜‘ํ•˜๋Š” ์น˜๋ช…์ ์ธ ๊ฒฐ๊ณผ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ์ž…๋ ฅ ์ œ์•ฝ์ด ์žˆ๋Š” ์ƒํ™ฉ์—์„œ ํฐ ์ดˆ๊ธฐ ์˜ค์ฐจ๋Š” ๊ณผ๋„ํ•œ ์ œ์–ด ์ž…๋ ฅ์„ ์œ ๋ฐœํ•˜์—ฌ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ์„ ์‹ฌ๊ฐํ•˜๊ฒŒ ์ €ํ•˜์‹œํ‚จ๋‹ค.

์•ž์„œ ์–ธ๊ธ‰ํ•œ ๋„๋‹ฌ ๋‹จ๊ณ„์—์„œ์˜ ๊ฐ•์ธ์„ฑ ๋ถ€์žฌ์™€ ๊ณผ๋„ํ•œ ์ œ์–ด ์ž…๋ ฅ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ (time-varying SMC, TV-SMC) ๊ธฐ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค [8]. TV-SMC์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์„ ๊ณ ์ •๋œ (fixed) ํ‰๋ฉด์œผ๋กœ ๋‘์ง€ ์•Š๊ณ , ์ดˆ๊ธฐ ์ƒํƒœ์—์„œ ์‹œ์ž‘ํ•˜์—ฌ ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๋ชฉํ‘œ ์ง€์ ์œผ๋กœ ์ด๋™ํ•˜๊ฑฐ๋‚˜ ํšŒ์ „ํ•˜๋Š” ๋™์ ์ธ ํ‘œ๋ฉด์œผ๋กœ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. J. S. Kim ๋“ฑ์€ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์ฐจ์„  ๋ณ€๊ฒฝ ์ œ์–ด๋ฅผ ์œ„ํ•ด ์ตœ์  ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ (optimal TV-SMC)๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค [8]. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์˜ ๊ธฐ์šธ๊ธฐ๋ฅผ ์‹œ๊ฐ„์˜ ํ•จ์ˆ˜๋กœ ์ •์˜ํ•˜์—ฌ, ์ดˆ๊ธฐ ์ƒํƒœ๊ฐ€ ์ด๋ฏธ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด ์œ„์— ์žˆ๋„๋ก ์„ค์ •ํ•จ์œผ๋กœ์จ ๋„๋‹ฌ ๋‹จ๊ณ„๋ฅผ ์ œ๊ฑฐํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ์„ ํ–‰ ์—ฐ๊ตฌ๋Š” ๋‘ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ํ•œ๊ณ„๋ฅผ ์ง€๋‹ˆ๊ณ  ์žˆ์—ˆ๋‹ค. ์ฒซ์งธ, ์‹œ์Šคํ…œ์˜ ์ œ์•ฝ ์กฐ๊ฑด์„ ๋ช…์‹œ์ ์œผ๋กœ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ํƒ์ƒ‰์€ ์ œ์•ฝ ์กฐ๊ฑด์„ ์œ„๋ฐ˜ํ•˜๋Š” ํ•ด๋ฅผ ์ˆ˜๋™์œผ๋กœ ์ œ๊ฑฐํ•  ์ˆ˜๋Š” ์žˆ์œผ๋‚˜, ์ตœ์ ํ™” ๊ณผ์ • ์ž์ฒด์— ์ œ์•ฝ ์กฐ๊ฑด์„ ํฌํ•จํ•˜์—ฌ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” ๊ตฌ์กฐ์  ์ ‘๊ทผ์€ ์•„๋‹ˆ์—ˆ๋‹ค. ๋‘˜์งธ, ์ž„์˜์˜ ์ดˆ๊ธฐ ์ƒํƒœ (arbitrary initial state)์— ๋Œ€ํ•œ ์ตœ์ ์„ฑ์„ ๋ณด์žฅํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ตœ์ ํ™”๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ํŠน์ • ์ดˆ๊ธฐ ์กฐ๊ฑด์— ๋Œ€ํ•ด์„œ๋งŒ ์œ ํšจํ–ˆ์œผ๋ฉฐ, ์ดˆ๊ธฐ ์ƒํƒœ๊ฐ€ ๋‹ฌ๋ผ์ง€๋ฉด ํ•ด๋‹น ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ๋” ์ด์ƒ ์ตœ์ ํ•ด (optimal solution)๊ฐ€ ์•„๋‹ˆ์—ˆ๋‹ค.

์ตœ๊ทผ ์ œ์–ด ์ด๋ก  ๋ถ„์•ผ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด์™€ ๋ชจ๋ธ ์˜ˆ์ธก ์ œ์–ด (Model Predictive Control, MPC)๋ฅผ ์œตํ•ฉํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค [9- 10]. ์ด๋ฅผ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์˜ˆ์ธก ์ œ์–ด (Sliding Mode Predictive Control, SMPC)๋ผ ๋ถ€๋ฅธ๋‹ค. SMPC ๊ด€๋ จ ์ตœ์‹  ์—ฐ๊ตฌ์—์„œ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ํŒจ๋Ÿฌ๋‹ค์ž„์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. 1) Block-To-Block (BTB) ๋ฐฉ์‹ [11- 12]: SMC์™€ MPC๋ฅผ ๋…๋ฆฝ์ ์ธ ๋ธ”๋ก์œผ๋กœ ์„ค๊ณ„ํ•˜์—ฌ ๊ฒฐํ•ฉํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, MPC๊ฐ€ ์ƒ์„ฑํ•œ ์ตœ์  ์ž…๋ ฅ์„ SMC๊ฐ€ ์ถ”์ข…ํ•˜๊ฑฐ๋‚˜, MPC๊ฐ€ Nominal ์ œ์–ด ์ž…๋ ฅ์„ ์ƒ์„ฑํ•˜๊ณ  SMC๊ฐ€ ์™ธ๋ž€ ๋ณด์ƒ์„ ๋‹ด๋‹นํ•˜๋Š” ํ˜•ํƒœ์ด๋‹ค. M. Rubagotti ๋“ฑ์€ ์ ๋ถ„ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ (integral sliding mode)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ•์ธ์„ฑ์„ ํ™•๋ณดํ•˜๊ณ  MPC๋ฅผ ํ†ตํ•ด ์ œ์•ฝ ์กฐ๊ฑด์„ ์ฒ˜๋ฆฌํ•˜์˜€๋‹ค [11]. 2) Integrated Block (IB) ๋ฐฉ์‹ [13- 14]: SMC์™€ MPC๋ฅผ ํ•˜๋‚˜์˜ ํ†ตํ•ฉ๋œ ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์œตํ•ฉํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ์ด ๋ฐฉ์‹์€ ์Šฌ๋ผ์ด๋”ฉ ๋ณ€์ˆ˜ ์ž์ฒด๋ฅผ ๋น„์šฉ ํ•จ์ˆ˜ (cost function)์— ํฌํ•จ์‹œํ‚ค๊ฑฐ๋‚˜, ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ๋„๋‹ฌ ์กฐ๊ฑด์„ MPC์˜ ์ข…๋ฃŒ ์ œ์•ฝ ์กฐ๊ฑด (terminal constraint)์œผ๋กœ ์„ค์ •ํ•˜๋Š” ๋“ฑ์˜ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค. M. Rubagotti ๋“ฑ ์ด์‚ฐ ์‹œ๊ฐ„ ์‹œ์Šคํ…œ์—์„œ MPC์˜ ์ด๋™๊ตฌ๊ฐ„ (receding horizon) ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ž…๋ ฅ ๋ฐ ์ƒํƒœ ์ œ์•ฝ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋ฉด์„œ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค [13- 14]. ์ด ์—ฐ๊ตฌ๋Š” ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์— ๋„๋‹ฌํ•˜๋Š” ๊ณผ์ •์„ ์ตœ์ ํ™”ํ•˜๊ฑฐ๋‚˜, ์ œ์•ฝ ์กฐ๊ฑด ํ•˜์—์„œ ๋ถˆ๋ณ€ ์ง‘ํ•ฉ (invariant set)์„ ์œ ์ง€ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์˜ ๋Œ€๋ถ€๋ถ„์€ ๊ณ ์ •๋œ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์„ ๊ฐ€์ •ํ•˜๊ฑฐ๋‚˜, ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด ์ž์ฒด๋ฅผ ๋™์ ์œผ๋กœ ์ตœ์ ํ™”ํ•˜์—ฌ ์„ค๊ณ„ํ•˜๋Š” ์ ‘๊ทผ๋ณด๋‹ค๋Š” ์ฃผ์–ด์ง„ ํ‘œ๋ฉด์— ๋„๋‹ฌํ•˜๋Š” ์ œ์–ด ์ž…๋ ฅ์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐ ์ฃผ๋ ฅํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค.

๋ณธ ๋…ผ๋ฌธ์€ ์„ ํ–‰ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„์˜€๋˜ ์ œ์•ฝ ์กฐ๊ฑด ์ฒ˜๋ฆฌ ๋ถ€์žฌ์™€ ์ดˆ๊ธฐ ์ƒํƒœ ์˜์กด์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์ œ์•ฝ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•œ ์ตœ์  ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด (constrained optimal TV-SMC) ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

์ฒซ์งธ, ์ด๋™๊ตฌ๊ฐ„ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•œ ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์˜ ์‹ค์‹œ๊ฐ„ ์ตœ์  ์„ค๊ณ„์ด๋‹ค. ๊ธฐ์กด์˜ ๊ณ ์ •๋œ ํŒŒ๋ผ๋ฏธํ„ฐ ํƒ์ƒ‰ ๋ฐฉ์‹์—์„œ ๋ฒ—์–ด๋‚˜, MPC ๊ตฌ์กฐ์™€ ๋น„์Šทํ•œ ์ด๋™๊ตฌ๊ฐ„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋„์ž…ํ•˜์—ฌ ๋งค ์ƒ˜ํ”Œ๋ง ์‹œ๊ฐ„๋งˆ๋‹ค ํ˜„์žฌ ์ƒํƒœ์™€ ์ œ์•ฝ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•œ ์ตœ์ ์˜ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์„ ๊ณ„์‚ฐํ•œ๋‹ค. ๋‘˜์งธ, ๋ช…์‹œ์ ์ธ ์ œ์•ฝ ์กฐ๊ฑด์˜ ํ†ตํ•ฉ์ด๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์€ ์ž…๋ ฅ ํฌ๊ธฐ, ์ž…๋ ฅ ๋ณ€ํ™”์œจ, ๊ทธ๋ฆฌ๊ณ  ์ƒํƒœ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ์ œ์•ฝ ์กฐ๊ฑด์„ ์ตœ์ ํ™” ๋ฌธ์ œ์˜ ๋ถ€๋“ฑ์‹ ์ œ์•ฝ ์กฐ๊ฑด์œผ๋กœ ์ง์ ‘ ๊ณ ๋ คํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ฌผ๋ฆฌ์  ํ•œ๊ณ„๋ฅผ ์œ„๋ฐ˜ํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ์ตœ์ ์˜ ๊ณผ๋„ ์‘๋‹ต ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๋Š” ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ๊ถค์ ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ์…‹์งธ, ์ž„์˜์˜ ์ดˆ๊ธฐ ์ƒํƒœ์— ๋Œ€ํ•œ ๊ฐ•์ธํ•œ ์ตœ์ ์„ฑ ํ™•๋ณด์ด๋‹ค. ์„ ํ–‰ ์—ฐ๊ตฌ๊ฐ€ ํŠน์ • ์ดˆ๊ธฐ ์ƒํƒœ์— ๋Œ€ํ•ด์„œ๋งŒ ์ตœ์ ํ™”๋œ ๊ถค์ ์„ ์ œ๊ณตํ–ˆ๋˜ ๊ฒƒ๊ณผ ๋‹ฌ๋ฆฌ, ๋ณธ ๋…ผ๋ฌธ์€ ์ž„์˜์˜ ์ดˆ๊ธฐ ์ƒํƒœ์—์„œ๋„ ์ด๋™๊ตฌ๊ฐ„ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ตœ์ ์˜ ์Šฌ๋ผ์ด๋”ฉ ๊ถค์ ์„ ๊ฐฑ์‹ ํ•œ๋‹ค. ์ด๋Š” ์‹œ์Šคํ…œ์˜ ๋ถˆํ™•์‹ค์„ฑ์ด๋‚˜ ์ดˆ๊ธฐ ์กฐ๊ฑด์˜ ๋ณ€๋™์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ผ๊ด€๋œ ์ œ์–ด ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๊ฒŒ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด์˜ ๊ฐ•์ธ์„ฑ๊ณผ ๋ชจ๋ธ ์˜ˆ์ธก ์ œ์–ด์˜ ์ตœ์ ํ™” ๋ฐ ์ œ์•ฝ ์กฐ๊ฑด ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„, ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์˜ ์ตœ์  ์„ค๊ณ„๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ ์œ ๊ธฐ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜์˜€๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค๊ณผ ์ฐจ๋ณ„ํ™”๋œ๋‹ค.

2. ์ฐจ๋Ÿ‰ ์ข… ๋ฐฉํ–ฅ ๋ชจ๋ธ

์ฐจ๋Ÿ‰์˜ ์ข…๋ฐฉํ–ฅ ๋™์—ญํ•™์€ ์—”์ง„, ํ† ํฌ ์ปจ๋ฒ„ํ„ฐ, ํŠธ๋žœ์Šค๋ฏธ์…˜, ํƒ€์ด์–ด ๋“ฑ ๋ณต์žกํ•˜๊ณ  ๋‹ค์–‘ํ•œ ์‹œ์Šคํ…œ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค [15]. ์ด๋Ÿฌํ•œ ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์„ ๋ชจ๋‘ ๋น„์„ ํ˜•์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ ๋ณด๋‹ค, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์•„๋ž˜ ์‹๊ณผ ๊ฐ™์ด ๊ฐ„๋‹จํ•œ ์‹œ๊ฐ„ ์ง€์—ฐ ๋ชจ๋ธ๋กœ ์‚ฌ์šฉํ•œ๋‹ค [15].

(1)
$\ddot{a}=\dfrac{1}{\tau s + 1}a_{des}$

์—ฌ๊ธฐ์„œ $a$๋Š” ์ฐจ๋Ÿ‰ center of gravity (c.g.)์—์„œ์˜ ์ข… ๋ฐฉํ–ฅ ๊ฐ€์†๋„์ด๊ณ , $a_{des}$๋Š” ์›ํ•˜๋Š” ์ฐจ๋Ÿ‰ ์ข… ๋ฐฉํ–ฅ ๊ฐ€์†๋„์ด๋‹ค. ์ข… ๋ฐฉํ–ฅ ์ œ์–ด๊ธฐ์—์„œ๋Š” $a_{des}$๋ฅผ ์ œ์–ด ์ž…๋ ฅ์œผ๋กœ ๊ณ„์‚ฐํ•œ๋‹ค. $\tau$๋Š” $a_{des}$๊ฐ’์„ ์ฐจ๋Ÿ‰์— ์ž…๋ ฅํ•˜์˜€์„ ๋•Œ, ์‹ค์ œ๋กœ ์ฐจ๋Ÿ‰์˜ ์ข… ๋ฐฉํ–ฅ ๊ฐ€์†๋„ $a$๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ๊นŒ์ง€์˜ ๊ฑธ๋ฆฐ ์‹œ๊ฐ„์ด๋‹ค. ์ฆ‰ ์ œ์–ด ์ž…๋ ฅ $a_{des}$๋ฅผ ์ž…๋ ฅํ•˜๊ณ  $\tau$ ์‹œ๊ฐ„ ๋’ค ์‹ค์ œ๋กœ ์ฐจ๋Ÿ‰์˜ ์ข… ๋ฐฉํ–ฅ ๊ฐ€์†๋„๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์ด๋‹ค. (1)์„ ์‹œ๊ฐ„์— ๋Œ€ํ•œ ๋ฐฉ์ •์‹์œผ๋กœ ๋ณ€ํ™˜ํ•œ ๋’ค ์ƒํƒœ ๊ณต๊ฐ„ ๋ฐฉ์ •์‹ (state-space equation)์œผ๋กœ ํ‘œํ˜„ ํ•˜๋ฉด ์•„๋ž˜ ์‹๊ณผ ๊ฐ™์ด ๋œ๋‹ค.

(2)
$\dot{x}= A_{v}x + B_{v}u \\ \dfrac{d}{dt}\left[\begin{matrix}v \\ a\end{matrix}\right]=\left[\begin{matrix}0 & 1 \\ 0 & -\dfrac{1}{\tau}\end{matrix}\right]\left[\begin{matrix}v \\ a\end{matrix}\right]+\left[\begin{matrix}0 \\\dfrac{1}{\tau}\end{matrix}\right]u$

์—ฌ๊ธฐ์„œ $x =\left[\begin{matrix}v & a\end{matrix}\right]^{T}$๋Š” ์‹œ์Šคํ…œ์˜ ์ƒํƒœ์ด๋ฉฐ, $v$๋Š” ์ฐจ๋Ÿ‰ c.g.์—์„œ์˜ ์ข… ๋ฐฉํ–ฅ ์†๋„์ด๊ณ , $u$๋Š” ์ œ์–ด ์ž…๋ ฅ์ด๋ฉฐ (1)์—์„œ์˜ $a_{des}$์™€ ๊ฐ™๋‹ค. ์ฐจ๋Ÿ‰ ์ข… ๋ฐฉํ–ฅ ๋ชจ๋ธ (2)๋ฅผ zero-order hold (ZOH) ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์ด์‚ฐํ™” ํ•˜๋ฉด, ์•„๋ž˜ ์‹๊ณผ ๊ฐ™์ด ์ด์‚ฐ ์‹œ๊ฐ„ ๋ชจ๋ธ (discrete-time model)์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

(3)
$x(k+1)=\Phi x(k)+\gamma u(k)$

์—ฌ๊ธฐ์„œ $\Phi\in R^{2\times 2}, \gamma\in R^{2\times 1}$์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” (3)์„ ์ด์šฉํ•˜์—ฌ ์ œ์–ด๊ธฐ๋ฅผ ์„ค๊ณ„ํ•œ๋‹ค.

3. ์ด์‚ฐ ์‹œ๊ฐ„ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด

3.1 ๊ธฐ๋ณธ ๊ฐœ๋…

์ด์‚ฐ ์‹œ๊ฐ„ ๋ชจ๋ธ์ด (3)๊ณผ ๊ฐ™์ด ์ฃผ์–ด์ ธ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•˜์ž. ๋จผ์ € ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์„ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ํ•œ๋‹ค.

(4)
$s(k)=S\cdot x(k)$

์—ฌ๊ธฐ์„œ $S=\left[\begin{matrix}\eta & 1\end{matrix}\right]$์ด๋‹ค. ๋งŒ์•ฝ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๊ฐ€ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์— ์กด์žฌํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋ฉด, $s(k+1)=s(k)=0$์ด๋‹ค [1- 2]. ์—ฌ๊ธฐ์„œ ์šฐ๋ฆฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

(5)
$0 =Sx(k+1) =S\Phi x(k)+\gamma u_{eq}(k)$

(5)์—์„œ $u_{eq}(k)$๋Š” ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์„ ๋”ฐ๋ผ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๊ฐ€ ์›€์ง์ด๊ฒŒ ํ•˜๋Š” ๋“ฑ๊ฐ€ ์ œ์–ด ์ž…๋ ฅ์ด๋ฉฐ, ์•„๋ž˜ ์‹๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐ๋œ๋‹ค [1].

(6)
$u_{eq}= -(S\gamma)^{-1}S\Phi x(k)$

์—ฌ๊ธฐ์„œ $(S\gamma)^{-1}$๊ฐ€ ์กด์žฌํ•˜๋„๋ก $S$๋ฅผ ์„ค๊ณ„ํ•œ๋‹ค.

์šฐ๋ฆฌ๋Š” ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๊ฐ€ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•œ ๋„๋‹ฌ ๋‹จ๊ณ„์—์„œ์˜ ์ œ์–ด ์ž…๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์•„๋ž˜์™€ ๊ฐ™์€ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•œ๋‹ค [8, 16].

(7)
$s(k+1)= W\cdot |s(k)|, -1< W <1$

(7)์„ ์ด์šฉํ•˜์—ฌ, ์ตœ์ข…์ ์œผ๋กœ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด์˜ ์ž…๋ ฅ์€ ๋“ฑ๊ฐ€ ์ œ์–ด ์ž…๋ ฅ (6)๊ณผ ๋„๋‹ฌ ์ œ์–ด ์ž…๋ ฅ์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‹์œผ๋กœ ํ‘œํ˜„๋œ๋‹ค.

(8)
$u(k)=u_{eq}(k)+(S\gamma)^{-1}Ws(k) =(S\gamma)^{-1}(WS-S\Phi)x(k) =G\cdot x(k)$

3.2 ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด

3.1์—์„œ ์•Œ์•„๋ณธ SMC๋Š” ๋ชจ๋ธ์˜ ๋ถˆํ™•์‹ค์„ฑ์ด๋‚˜ ์™ธ๋ž€์— ๊ฐ•์ธํ•œ ์ œ์–ด ๋ฐฉ๋ฒ•์ด์ง€๋งŒ ๋„๋‹ฌ ๋‹จ๊ณ„์—์„œ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๋ฅผ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์œผ๋กœ ๋ณด๋‚ด๊ธฐ ์œ„ํ•ด ๋งŽ์€ ์ œ์–ด ์ž…๋ ฅ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ์ฐจ๋Ÿ‰ ์ œ์–ด์— ๊ทธ๋Œ€๋กœ ์ ์šฉํ•œ๋‹ค๋ฉด, ๋ชฉํ‘œ ์†๋„๊ฐ€ ๊ฐ‘์ž๊ธฐ ๋ณ€ํ•˜๋Š” ์ƒํ™ฉ์—์„œ ๊ณผ๋„ํ•œ ๊ฐ€์†์ด๋‚˜ ๊ฐ์†์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๊ณ , ์ด๋Š” ํƒ‘์Šน๊ฐ์˜ ์Šน์ฐจ๊ฐ์„ ์ €ํ•˜์‹œํ‚ฌ ๊ฐ€๋Šฅ์„ฑ์ด ์กด์žฌํ•œ๋‹ค [8]. ๋”ฐ๋ผ์„œ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด์˜ ์žฅ์ ์„ ์ด์šฉํ•˜๋ฉด์„œ ๋„๋‹ฌ ๋‹จ๊ณ„์—์„œ์˜ ๋ถ€๋“œ๋Ÿฌ์šด ์ œ์–ด ์ž…๋ ฅ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ, ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์„ ์‹œ๋ณ€ ํ•จ์ˆ˜๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค [8].

(9)
$S(k)=\left[\begin{matrix}\nu(k)& 1\end{matrix}\right]$

์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ (9)๋ฅผ ํ™œ์šฉํ•˜์—ฌ, time-varying ์Šฌ๋ผ์ด๋”ฉ ์ œ์–ด๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ๊ณ„์‚ฐ๋œ๋‹ค.

(10)
$u(k)=(S(k)\gamma)^{-1}(WS(k)-S(k)\Phi)x(k) =G(k)\cdot x(k)$

4. ์ด๋™๊ตฌ๊ฐ„์—์„œ์˜ ์ตœ์  ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด

์ตœ์ ์˜ ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ $S(k)=\left[\begin{matrix}\nu(k)& 1\end{matrix}\right]$์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด, ๋จผ์ € ์‹œ๊ฐ„ ํ™•์žฅ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•œ๋‹ค. ์•„๋ž˜ ์‹์€ ํŠน์ • ๋ฏธ๋ž˜ ์‹œ๊ฐ„๊นŒ์ง€ ํ™•์žฅํ•œ ์ œ์–ด ์ž…๋ ฅ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

(11)
$\left[\begin{matrix}u(k)\\u(k+1)\\\vdots \\u(k+N-1)\end{matrix}\right] \\=\left[\begin{matrix}G(k)&0&\cdots &0\\0&G(k+1)&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &G(k+N-1)\end{matrix}\right]\left[\begin{matrix}x(k)\\x(k+1)\\\vdots \\x(k+N-1)\end{matrix}\right] \\ \widetilde{u}=\overline{G}\widetilde{x}$

์—ฌ๊ธฐ์„œ $\overline{G}\in R^{N\times 2N}$์ด๊ณ , $N$์€ ๋ฏธ๋ž˜ ์‹œ๊ฐ„๊ณผ ๊ด€๋ จ๋œ ํŒŒ๋ผ๋ฏธํ„ฐ์ด๋ฉฐ ๋†’๊ฒŒ ๊ฐ’์„ ์„ค์ •ํ• ์ˆ˜๋ก ๋จผ ๋ฏธ๋ž˜ ์‹œ๊ฐ„๊นŒ์ง€ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๋„ ์‹œ๊ฐ„ ํ™•์žฅ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ๋ฏธ๋ž˜ ํŠน์ • ์‹œ๊ฐ„๊นŒ์ง€ ํ‘œํ˜„ํ•œ๋‹ค๋ฉด ์•„๋ž˜ ์‹๊ณผ ๊ฐ™๋‹ค.

(12)
$\left[\begin{matrix}x(k)\\x(k+1)\\\vdots \\x(k+N-1)\end{matrix}\right]=\left[\begin{matrix}\Phi^{0}\\\Phi^{1}\\\vdots \\\Phi^{N-1}\end{matrix}\right]x(k) \\+\left[\begin{matrix}0&0&\cdots &0\\\gamma &0&\cdots &0\\ \vdots &\vdots &\ddots &\vdots \\\Phi^{N-2}\gamma &\Phi^{N-3}\gamma &\cdots &0\end{matrix}\right] \left[\begin{matrix}u(k)\\u(k+1)\\\vdots \\u(k+N-1)\end{matrix}\right] \\ \widetilde{x}=\psi x(k)+ Y \widetilde{u}$

์—ฌ๊ธฐ์„œ $\psi\in R^{2N\times 2}$, ๊ทธ๋ฆฌ๊ณ  $Y\in R^{2N\times N}$์ด๋‹ค. ์ž…๋ ฅ์— ๋Œ€ํ•œ ๋ณ€ํ™” $\Delta u(k)=u(k)-u(k-1)$๋„ ์‹œ๊ฐ„ ํ™•์žฅ ๊ตฌ์กฐ์—์„œ ๊ณ ๋ คํ•œ๋‹ค.

(13)
$\Delta\widetilde{u}=\left(I_{N\times N}-\left[\begin{matrix}0 & 0 \\ I_{(N-1)\times(N-1)}& 0\end{matrix}\right]\right)\widetilde{u} -\left[\begin{matrix}1 \\ 0_{N-1}\end{matrix}\right]u(k-1) =A_{\Delta u}\widetilde{u}- B_{\Delta u}u(k-1)$

๋ชฉํ‘œํ•˜๊ณ ์ž ํ•˜๋Š” ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์„ ํ†ตํ•ด ๊ณ„์‚ฐ๋œ ์ œ์–ด ๊ฒŒ์ธ์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

(14)
$G^{r}=(S^{r}\gamma)^{-1}\left(WS^{r}- S^{r}\Phi\right)$

(14)๋ฅผ ์ด์šฉํ•˜์—ฌ ์ตœ์ข…์ ์œผ๋กœ ๋ชฉํ‘œํ•˜๋Š” ์ œ์–ด ์ž…๋ ฅ์€ (15)์™€ ๊ฐ™๋‹ค.

(15)
$u(k)=G^{r}\cdot x(k)$

์ด๋™๊ตฌ๊ฐ„ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ์ตœ์ ํ™”๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉํ‘œ ํ•จ์ˆ˜ (objective function)๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ์„ค์ •ํ•˜์˜€๋‹ค.

(16)
$\dfrac{1}{2}\| \overline{G}^{r}\widetilde{x}-\overline{G}\widetilde{x} \|_{2}^{2}=\dfrac{1}{2}\left(\overline{G}^{r}\widetilde{x}-\overline{G}\widetilde{x}\right)^{T}\left(\overline{G}^{r}\widetilde{x}-\overline{G}\widetilde{x}\right) \\ =\dfrac{1}{2}\widetilde{u}^{T}H\widetilde{u}+ f_{u}(k)\widetilde{u}^{T}+ f_{o}(k)$

(16)์—์„œ ๊ฐ๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

$H =\left(\overline{G}^{r}Y - I_{N_{p}\times N_{p}}\right)^{T}\left(\overline{G}^{r}Y - I_{N_{p}\times N_{p}}\right), \\ f_{u}(k)= x^{T}(k)\psi^{T}\overline{G}^{r T}\left(\overline{G}^{r}Y - I_{N_{p}\times N_{p}}\right), \\ f_{o}(k)=\dfrac{1}{2}x^{T}(k)\psi^{T}\overline{G}^{r T}\overline{G}^{r}\psi x(k).$

๋˜ํ•œ, ์ œ์•ฝ ์กฐ๊ฑด์„ ์„ค์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์–ด ์ž…๋ ฅ์— ๋Œ€ํ•œ ์ œ์•ฝ, ์ œ์–ด ๋ณ€ํ™”์— ๋Œ€ํ•œ ์ œ์•ฝ, ๊ทธ๋ฆฌ๊ณ  ์‹œ์Šคํ…œ ์ƒํƒœ์— ๋Œ€ํ•œ ์ œ์•ฝ์„ ์•„๋ž˜์™€ ๊ฐ™์ด ์„ค์ •ํ•˜์˜€๋‹ค.

(17)
$A\widetilde{u}\le B(k)= B_{o}+ B_{k}\left[\begin{matrix}u(k-1)\\x(k)\end{matrix}\right]$

(17)์—์„œ ๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

$A=\left[\begin{matrix}I_{N_{p}\times N_{p}}\\-I_{N_{p}\times N_{p}}\\A_{\Delta u}\\-A_{\Delta u}\\Y \\- Y\end{matrix}\right], B_{o}=\left[\begin{matrix}\widetilde{u}_{\max}\\-\widetilde{u}_{\min}\\\Delta\widetilde{u}_{\max}\\-\Delta\widetilde{u}_{\min}\\\widetilde{x}_{\max}\\-\widetilde{x}_{\min}\end{matrix}\right], B_{k}=\left[\begin{matrix}0&0\\0&0\\B_{\Delta u}&0\\-B_{\Delta u}&0\\0&-\psi \\0&\psi\end{matrix}\right]$

์ตœ์ข…์ ์œผ๋กœ ์ œ์•ฝ ์กฐ๊ฑด์ด ์žˆ๋Š” ์ตœ์ ํ™” ๋ฌธ์ œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

(18)

$\overline{G^{*}}(k)\widetilde{x}(k)=\min\left(\dfrac{1}{2}\widetilde{u^{T}}H\widetilde{u}+f_{u}(k)\widetilde{u^{T}}+f_{o}(k)\right)$

subj. to $A\widetilde{u}\le B_{o}+ B_{k}p(k) \\ G(k+N)x(k+N)= G^{r}(k+N)x(k+N)$

์—ฌ๊ธฐ์„œ $p(k)=\left[\begin{matrix}u(k-1)\\x(k)\end{matrix}\right]$ ์ด๋‹ค. (18)์„ ํ†ตํ•ด ๊ณ„์‚ฐ๋œ ์ œ์–ด ์ž…๋ ฅ์€ ์ œ์•ฝ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•œ ์ตœ์  ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ์ œ์–ด์˜ ๊ฒฐ๊ณผ๋ผ๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

5. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ

์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด MATLAB/Simulink๋ฅผ ์ด์šฉํ•˜์˜€๋‹ค. ํ”Œ๋žœํŠธ์™€ ์ œ์–ด๊ธฐ์˜ ์ƒ˜ํ”Œ ์‹œ๊ฐ„์€ 10ms๋กœ ์„ค์ •ํ•˜์˜€๊ณ , ์ฐจ๋Ÿ‰์˜ ์ดˆ๊ธฐ ์ƒํƒœ๋Š” $x_{0}=\left[\begin{matrix}15 & 0\end{matrix}\right]^{T}$๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์‹œ์Šคํ…œ์˜ ๊ฐ ์ƒํƒœ์˜ ๋‹จ์œ„๋Š” ๊ฐ๊ฐ m/s, $m/s^{2}$์ด๋‹ค. ์„ฑ๋Šฅ ๋น„๊ต๋ฅผ ์œ„ํ•ด ์„ ํ–‰ ์—ฐ๊ตฌ์˜ ์„ ํ˜• ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ (Linear TV-SMC) ๊ธฐ๋ฒ•์„ ๋Œ€์กฐ๊ตฐ์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ตœ์ ํ™” ๋ฌธ์ œ์ธ (18)์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด MATLAB์˜ quadprog ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 1์€ ์‹œ์Šคํ…œ์˜ ์ฒซ ๋ฒˆ์งธ ์ƒํƒœ ๋ณ€์ˆ˜์ธ ์ฐจ๋Ÿ‰ ์†๋„ $x_{1}$์˜ ์‘๋‹ต ํŠน์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ชฉํ‘œ ์ฐจ๋Ÿ‰ ์†๋„์— ๋Œ€ํ•ด ๊ธฐ์กด์˜ ์„ ํ˜• ๊ธฐ๋ฒ• (linear)์€ ์ œ์•ˆํ•œ ์ตœ์  ๊ธฐ๋ฒ• (optimal)๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ๋ชฉํ‘œ ์†๋„์— ๋„๋‹ฌํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด์ง€๋งŒ, ์ด๋Š” ์ฐจ๋Ÿ‰์˜ ๋ฌผ๋ฆฌ์  ์ œ์•ฝ ์กฐ๊ฑด์„ ๋ฌด์‹œํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. ๋ฐ˜๋ฉด ์ œ์•ˆํ•œ ์ตœ์  ๊ธฐ๋ฒ•์€ ์‹œ์Šคํ…œ์— ๋ถ€๊ณผ๋œ ์ œ์•ฝ ์กฐ๊ฑด์„ ๋ชจ๋‘ ์ค€์ˆ˜ํ•˜๋ฉด์„œ ์•ˆ์ •์ ์œผ๋กœ ๋ชฉํ‘œ ์†๋„์— ์ˆ˜๋ ดํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 1. ์ฒซ ๋ฒˆ์งธ ์‹œ์Šคํ…œ ์ƒํƒœ: $x_{1}$ (์ฐจ๋Ÿ‰ ์†๋„)

Fig. 1. The first system state: $x_{1}$ (Vehicle Speed)

../../Resources/kiee/KIEE.2026.75.2.426/fig1.png

๊ทธ๋ฆผ 2๋Š” ๋‘ ๋ฒˆ์งธ ์ƒํƒœ ๋ณ€์ˆ˜์ธ ์ฐจ๋Ÿ‰ ๊ฐ€์†๋„ $x_{2}$์˜ ๊ถค์ ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋ณธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ๋Š” ์ ์ ˆํ•œ ์Šน์ฐจ๊ฐ์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์†๋„์— ๋Œ€ํ•œ ์ƒํƒœ ์ œ์•ฝ (state constraint)์„ 1.5 $m/s^{2}$์œผ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค [17]. ๊ธฐ์กด ์„ ํ˜• ๊ธฐ๋ฒ•์€ ๊ณผ๋„ ๊ตฌ๊ฐ„์—์„œ ๊ฐ€์†๋„๊ฐ€ 2.0 $m/s^{2}$๊นŒ์ง€ ์น˜์†Ÿ์œผ๋ฉฐ ์ œ์•ฝ ์กฐ๊ฑด์„ ํฌ๊ฒŒ ์œ„๋ฐ˜ํ•˜๋Š” ๋ฐ˜๋ฉด, ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์€ ๊ฐ€์†๋„๊ฐ€ ์ œ์•ฝ ๊ฒฝ๊ณ„์ธ 1.5 $m/s^{2}$์— ๋„๋‹ฌํ•˜๋ฉด ์ด๋ฅผ ์ดˆ๊ณผํ•˜์ง€ ์•Š๋„๋ก ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ตœ์ ํ™”ํ•˜์—ฌ ์ œ์•ฝ ์กฐ๊ฑด์„ ์ค€์ˆ˜ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 2. ๋‘ ๋ฒˆ์งธ ์‹œ์Šคํ…œ ์ƒํƒœ: $x_{2}$ (์ฐจ๋Ÿ‰ ๊ฐ€์†๋„)

Fig. 2. The second system state: $x_{2}$ (Vehicle Accel.)

../../Resources/kiee/KIEE.2026.75.2.426/fig2.png

๊ทธ๋ฆผ 3๊ณผ ๊ทธ๋ฆผ 4๋Š” ๊ฐ๊ฐ ์ œ์–ด ์ž…๋ ฅ $u$์™€ ์ œ์–ด ์ž…๋ ฅ ๋ณ€ํ™”์œจ $\Delta u$์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๊ทธ๋ฆผ 4์˜ ํ™•๋Œ€๋œ ์˜์—ญ์„ ๋ณด๋ฉด, ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ดˆ๊ธฐ ์ œ์–ด ์‹œ์ž‘ ์‹œ์ ์—์„œ ์ž…๋ ฅ ๋ณ€ํ™”์œจ์ด ์ œ์•ฝ ๋ฒ”์œ„๋ฅผ ํฌ๊ฒŒ ๋ฒ—์–ด๋‚˜๋Š” ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๋ฅผ ๋ณด์ธ๋‹ค. ์ด๋Š” ์‹ค์ œ ๊ตฌ๋™๊ธฐ์— ๋ฌด๋ฆฌ๋ฅผ ์ค„ ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๊ณผ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ QP (quadratic programming) ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ๋งค ์ˆœ๊ฐ„ ์ž…๋ ฅ ์ œ์•ฝ๊ณผ ๋ณ€ํ™”์œจ ์ œ์•ฝ ๋‚ด์—์„œ ์ตœ์  ํ•ด๋ฅผ ๋„์ถœํ•˜๋ฏ€๋กœ, ๋ชจ๋“  ์ž…๋ ฅ์ด ํ—ˆ์šฉ ๋ฒ”์œ„ ๋‚ด์—์„œ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ์ƒ์„ฑ๋œ๋‹ค.

๊ทธ๋ฆผ 3. ์ œ์–ด ์ž…๋ ฅ

Fig. 3. Control input

../../Resources/kiee/KIEE.2026.75.2.426/fig3.png

๊ทธ๋ฆผ 4. ์ œ์–ด ์ž…๋ ฅ ๋ณ€ํ™”

Fig. 4. Control input rate

../../Resources/kiee/KIEE.2026.75.2.426/fig4.png

๊ทธ๋ฆผ 5๋Š” ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์˜ ๋ณ€ํ™”๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ $\eta(k)$์˜ ๊ฒฐ๊ณผ์ด๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์€ ๊ณ ์ •๋œ ์„ ํ˜• ๊ทœ์น™์„ ๋”ฐ๋ฅด๋Š” ๊ธฐ์กด ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ์ด๋™๊ตฌ๊ฐ„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ํ˜„์žฌ ์ƒํƒœ์™€ ์ œ์•ฝ ์กฐ๊ฑด์˜ ์—ฌ์œ ๋„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ $\eta(k)$๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐฑ์‹ ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ œ์•ฝ ์กฐ๊ฑด์— ์ธ์ ‘ํ•œ ์ƒํ™ฉ์—์„œ๋„ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ์„ ์œ ์ง€ํ•˜๋ฉฐ ์ตœ์ ์˜ ์Šฌ๋ผ์ด๋”ฉ ๊ถค์ ์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 5. ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด ๊ฒฐ๊ณผ

Fig. 5. Result of time-varying sliding surface

../../Resources/kiee/KIEE.2026.75.2.426/fig5.png

๊ทธ๋ฆผ 6์€ ์Šฌ๋ผ์ด๋”ฉ ์‹œํ€€์Šค์ธ $s(k)$์˜ ๋ณ€ํ™”๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋‘ ๊ธฐ๋ฒ• ๋ชจ๋‘ ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ์˜ ํŠน์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ์ดˆ๊ธฐ ์ƒํƒœ์—์„œ $s(0)=0$์„ ๋งŒ์กฑํ•จ์œผ๋กœ์จ ๋„๋‹ฌ ๋‹จ๊ณ„๋ฅผ ์ œ๊ฑฐํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ๊ณ ์ •๋œ ์‹œ๋ณ€ ๊ทœ์น™์— ๋”ฐ๋ผ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์ด ๋ณ€ํ•˜๋Š” ๋ฐ˜๋ฉด, ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์€ ๋งค ์ƒ˜ํ”Œ๋ง ์‹œ์ ๋งˆ๋‹ค ์ œ์•ฝ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ์ตœ์ ์˜ ์Šฌ๋ผ์ด๋”ฉ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ณ„์‚ฐํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์€ ์ œ์•ฝ ์กฐ๊ฑด ์œ„๋ฐฐ๊ฐ€ ์˜ˆ์ƒ๋˜๋Š” ์ง€์ ์—์„œ ์Šฌ๋ผ์ด๋”ฉ ํ‘œ๋ฉด์˜ ๊ธฐ์šธ๊ธฐ๋ฅผ ์ตœ์ ์œผ๋กœ ๋ณด์ •ํ•˜๋ฉฐ ๋”์šฑ ๋ถ€๋“œ๋Ÿฌ์šด ์ˆ˜๋ ด ํŠน์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค.

๊ทธ๋ฆผ 6. ์Šฌ๋ผ์ด๋”ฉ ์‹œํ€€์Šค: $s(k)$

Fig. 6. Sliding Sequence: $s(k)$

../../Resources/kiee/KIEE.2026.75.2.426/fig6.png

๊ทธ๋ฆผ 7์€ ์ œ์–ด ์ž…๋ ฅ $u(k)$์™€ ์ œ์–ด ์ž…๋ ฅ ๋ณ€ํ™”์œจ $\Delta u(k)$์˜ ์ƒํ˜ธ ๊ด€๊ณ„๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒฐ๊ณผ์ด๋‹ค. ๊ฒ€์€์ƒ‰ ์‹ค์„ ์œผ๋กœ ํ‘œ์‹œ๋œ ์ง์‚ฌ๊ฐํ˜• ์˜์—ญ์€ ์‹œ์Šคํ…œ์˜ ๋ฌผ๋ฆฌ์  ํ•œ๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ํ†ตํ•ฉ ์ œ์•ฝ ์กฐ๊ฑด ๋ฒ”์œ„๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ, ๊ธฐ์กด์˜ ์„ ํ˜• ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ (linear) ๊ธฐ๋ฒ•์€ ์ œ์–ด ์‹œ์ž‘ ์‹œ์  ๋ฐ ๊ณผ๋„ ์‘๋‹ต ๊ตฌ๊ฐ„์—์„œ ์ œ์•ฝ ์กฐ๊ฑด์„ ํฌ๊ฒŒ ๋ฒ—์–ด๋‚˜๋Š” ๊ถค์ ์„ ๊ทธ๋ฆฐ๋‹ค. ํŠนํžˆ ์ œ์–ด ์ž…๋ ฅ์˜ ํฌ๊ธฐ๋Š” ํ•œ๊ณ„์น˜ ๋‚ด์— ์žˆ๋”๋ผ๋„ ์ž…๋ ฅ ๋ณ€ํ™”์œจ $\Delta u(k)$๊ฐ€ ํ—ˆ์šฉ ๋ฒ”์œ„๋ฅผ ์ƒํšŒํ•˜๋ฉฐ ์ง์‚ฌ๊ฐํ˜• ์ƒ๋‹จ ๋ฐ–์œผ๋กœ ๋‚˜๊ฐ€๋Š” ์–‘์ƒ์„ ๋ณด์ด๋Š”๋ฐ, ์ด๋Š” ์‹ค์ œ ๊ตฌ๋™๊ธฐ์˜ ์‘๋‹ต ์†๋„ ํ•œ๊ณ„๋ฅผ ์ดˆ๊ณผํ•˜๋Š” ๊ณผ๋„ํ•œ ์ œ์–ด ๋ช…๋ น์ด ์ธ๊ฐ€๋˜๊ณ  ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์ตœ์  ๊ธฐ๋ฒ• (optimal)์€ ์ƒํƒœ ๊ถค์ ์ด ์ œ์•ฝ ์กฐ๊ฑด์˜ ๊ฒฝ๊ณ„์— ๋„๋‹ฌํ•˜๋”๋ผ๋„ ๊ฒ€์€์ƒ‰ ์‹ค์„  ๋‚ด๋ถ€๋ฅผ ๋ฒ—์–ด๋‚˜์ง€ ์•Š๊ณ  ๊ฒฝ๊ณ„๋ฅผ ๋”ฐ๋ผ ์ด๋™ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” QP ์ตœ์ ํ™” ๊ณผ์ •์—์„œ $u(k)$์™€ $\Delta u(k)$์— ๋Œ€ํ•œ ์ œ์•ฝ ์กฐ๊ฑด์„ ๋ถ€๋“ฑ์‹ ์ œ์•ฝ์œผ๋กœ ๋ช…์‹œ์ ์œผ๋กœ ํฌํ•จํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ€๋Šฅํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์€ ์ž…๋ ฅ์˜ ํฌ๊ธฐ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ณ€ํ™”์œจ๊นŒ์ง€ ๋™์‹œ์— ๊ณ ๋ คํ•˜์—ฌ, ๊ตฌ๋™๊ธฐ์— ๋ฌด๋ฆฌ๋ฅผ ์ฃผ์ง€ ์•Š์œผ๋ฉด์„œ๋„ ์ตœ์ ์˜ ์Šฌ๋ผ์ด๋”ฉ ๊ถค์ ์„ ์œ ์ง€ํ•˜๋Š” ์ œ์–ด ๋Šฅ๋ ฅ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 7. ์ œ์•ฝ ์กฐ๊ฑด: ์ œ์–ด์ž…๋ ฅ - ์ œ์–ด ์ž…๋ ฅ ๋ณ€ํ™”

Fig. 7. Constraint: Control input - control input rate

../../Resources/kiee/KIEE.2026.75.2.426/fig7.png

๊ทธ๋ฆผ 8์€ ์ƒํƒœ ๋ณ€์ˆ˜ $x_{2}$์˜ ๊ถค์ ๊ณผ ์„ค์ •๋œ ์ƒํƒœ ์ œ์•ฝ ์กฐ๊ฑด (state constraint)์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ธฐ์กด์˜ Linear ๋ฐฉ์‹์€ ์ œ์–ด ๊ณผ์ •์—์„œ ์ƒํƒœ ๋ณ€์ˆ˜์˜ ์ œ์•ฝ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ๊ณผ๋„ ์ƒํƒœ์—์„œ ์„ค์ •๋œ ์ œ์•ฝ ์กฐ๊ฑด์„ ์ดˆ๊ณผํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์ธ ๋นจ๊ฐ„์ƒ‰ ์„ ์€ MPC ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์—์„œ ์ƒํƒœ ์ œ์•ฝ์„ ๋ช…์‹œ์ ์œผ๋กœ ๊ณ ๋ คํ•˜์—ฌ ์ œ์•ฝ ์กฐ๊ฑด ๊ฒฝ๊ณ„ ๋ถ€๊ทผ์—์„œ ๊ถค์ ์„ ๋Šฅ๋™์ ์œผ๋กœ ์กฐ์ ˆํ•˜์—ฌ ์ œ์•ฝ ์กฐ๊ฑด์„ ์œ„๋ฐ˜ํ•˜์ง€ ์•Š๊ณ  ์•ˆ์ •์ ์œผ๋กœ ๋ชฉํ‘œ์น˜์— ์ˆ˜๋ ดํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 8. ์ œ์•ฝ ์กฐ๊ฑด: ์ œ์–ด ์ž…๋ ฅ - ์ฐจ๋Ÿ‰ ๊ฐ€์†๋„

Fig. 8. Constraint: Control input - vehicle accel.

../../Resources/kiee/KIEE.2026.75.2.426/fig8.png

ํ‘œ 1์€ ๊ทธ๋ฆผ 7๊ณผ ๊ทธ๋ฆผ 8์˜ ์ •๋Ÿ‰์  ๋ถ„์„ ๊ฒฐ๊ณผ์ด๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ์–ด์ง„ ์ œ์•ฝ์กฐ๊ฑด์„ ์œ„๋ฐ˜ํ•œ ํšŸ์ˆ˜๊ฐ€ ์—†๊ณ , ์„ ํ˜• ๊ธฐ๋ฒ•์˜ ๊ฒฝ์šฐ ์ œ์–ด ์ž…๋ ฅ ๋ณ€ํ™”์— ๋Œ€ํ•ด 2๋ฒˆ์˜ ์ œ์•ฝ ์œ„๋ฐ˜, ์ฐจ๋Ÿ‰ ๊ฐ€์†๋„์— ๋Œ€ํ•ด 659๋ฒˆ์˜ ์ œ์•ฝ ์œ„๋ฐ˜์ด ๋ฐœ์ƒํ•˜์˜€๋‹ค.

ํ‘œ 1. ์ œ์•ฝ์กฐ๊ฑด ์œ„๋ฐ˜ ํšŸ์ˆ˜

Table 1. The number of constraint violations

linear optimal
์ œ์–ด์ž…๋ ฅ 0 0
์ œ์–ด ์ž…๋ ฅ ๋ณ€ํ™” 2 0
์ฐจ๋Ÿ‰ ๊ฐ€์†๋„ 659 0

5. ๊ฒฐ ๋ก 

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋™๊ตฌ๊ฐ„ ์ ‘๊ทผ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ์Šคํ…œ์˜ ๋ฌผ๋ฆฌ์  ์ œ์•ฝ ์กฐ๊ฑด์„ ๋ช…์‹œ์ ์œผ๋กœ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์ตœ์  ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ ์ œ์–ด์˜ ๊ณ ์งˆ์ ์ธ ๋ฌธ์ œ์˜€๋˜ ๋„๋‹ฌ ๋‹จ๊ณ„์—์„œ์˜ ๊ฐ•์ธ์„ฑ ๋ถ€์žฌ์™€ ์ œ์•ฝ ์กฐ๊ฑด ์ฒ˜๋ฆฌ์˜ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์‹œ๋ณ€ ์Šฌ๋ผ์ด๋”ฉ ํ‰๋ฉด์˜ ์„ค๊ณ„ ๋ฌธ์ œ๋ฅผ MPC ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์˜ ์ด์ฐจ ๊ณ„ํš๋ฒ• ๋ฌธ์ œ๋กœ ๊ตฌ์กฐํ™”ํ•˜์˜€๋‹ค. ์ฐจ๋Ÿ‰ ์ข…๋ฐฉํ–ฅ ์ œ์–ด ์‹œ์Šคํ…œ์„ ๋Œ€์ƒ์œผ๋กœ ์ˆ˜ํ–‰ํ•œ MATLAB/Simulink ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ, ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ๋„๋‹ฌ ๋‹จ๊ณ„๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ณ  ์ œ์–ด ์‹œ์ž‘ ์‹œ์ ๋ถ€ํ„ฐ ๊ฐ•์ธ์„ฑ์„ ํ™•๋ณดํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ œ์–ด ์ž…๋ ฅ์˜ ํฌ๊ธฐ์™€ ๋ณ€ํ™”์œจ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ฐจ๋Ÿ‰์˜ ๊ฐ€์†๋„์™€ ๊ฐ™์€ ์ƒํƒœ ๋ณ€์ˆ˜์— ๋ถ€๊ณผ๋œ ์ œ์•ฝ ์กฐ๊ฑด์„ ์—„๊ฒฉํžˆ ์ค€์ˆ˜ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ SMC์˜ ๊ฐ•์ธํ•จ๊ณผ MPC์˜ ์ตœ์ ํ™” ๋Šฅ๋ ฅ์„ ์œ ๊ธฐ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜์—ฌ, ๋ณต์žกํ•œ ์ œ์•ฝ ์กฐ๊ฑด์ด ์กด์žฌํ•˜๋Š” ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰ ์ œ์–ด ํ™˜๊ฒฝ์—์„œ ์•ˆ์ „์„ฑ๊ณผ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ๋ณด์žฅํ•  ์ˆ˜ ์žˆ๋Š” ์œ ํšจํ•œ ํ•ด๋ฒ•์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค.

Acknowledgements

This research was supported by the Regional Innovation System & Education(RISE) program through the Daejeon RISE Center, funded by the Ministry of Education(MOE) and the Daejeon Metropolitan City, Republic of Korea. (2025-RISE-06-008)

References

1 
C. Edwards, S. Spurgeon, 1998, Sliding mode control: theory and applicationsDOI
2 
V. Utkin, J. Guldner, J. Shi, 2017, Sliding mode control in electro-mechanical systemsDOI
3 
J. Boo, S. Hong, 2025, Disturbance Observer-Based Integral Sliding Mode Control for Bidirectional Platooning of Vehicles with Unknown Accelerations and Disturbances, The Transactions of the Korean Institute of Electrical Engineers, Vol. 74, No. 11, pp. 1950-1957DOI
4 
J. Park, S. Noh, H. Cho, 2025, Dynamic Axial Displacement Control of Axial Magnetic Bearing Using Sliding Mode Control Technique, The Transactions of the Korean Institute of Electrical Engineers, Vol. 74, No. 9, pp. 1521-1527DOI
5 
V. Utkin, J. Shi, 1996, Integral sliding mode in systems operating under uncertainty conditions, pp. 4591-4596DOI
6 
M. Rubagotti, A. Estrada, F. Castanos, A. Ferrara, L. Fridman, 2011, Integral sliding mode control for nonlinear systems with matched and unmatched perturbations, IEEE Transactions on Automatic Control, Vol. 56, No. 11, pp. 2699-2704DOI
7 
F. Castanos, L. Fridman, 2006, Analysis and design of integral sliding manifolds for systems with unmatched perturbations, IEEE Transactions on Automatic Control, Vol. 51, No. 5, pp. 853-858DOI
8 
J. S. Kim, S.-H. Lee, C. C. Chung, 2020, Lane Change Control with Optimal Time-varying Sliding Mode in Automated Driving Vehicle, pp. 430-435DOI
9 
S.-H. Lee, C. C. Chung, 2017, Predictive control with sliding mode for autonomous driving vehicle lateral maneuvering, pp. 2998-3003DOI
10 
A. Hansen, J. K. Hedrick, 2015, Receding horizon sliding control for linear and nonlinear systems, pp. 1629-1634DOI
11 
M. Rubagotti, D. M. Raimondo, A. Ferrara, 2011, Robust model predictive control with integral sliding mode in continuous-time sampled-data nonlinear systems, IEEE Trans. on Control Systems Technology, Vol. 56, No. 3, pp. 556-570DOI
12 
S. J. Fesharaki, M. Kamali, F. Sheikholeslam, H. A. Talebi, 2020, Robust model predictive control with sliding mode for constrained non-linear systems, IET Control Theory & Applications, Vol. 14, No. 17, pp. 2592-2599DOI
13 
M. Rubagotti, G. P. Incremona, A. Ferrara, 2018, A Discrete-Time Optimization-Based Sliding Mode Control Law for Linear Systems with Input and State Constraints, pp. 5940-5945DOI
14 
M. Rubagotti, G. P. Incremona, A. Ferrara, 2020, Constrained nonlinear discrete-time sliding mode control based on a receding horizon approach, IEEE Trans. on Automatic Control, Vol. 66, No. 8, pp. 3802-3809DOI
15 
R. Rajamani, 2012, Vehicle dynamics and controlDOI
16 
A. Bartoszewicz, 1998, Discrete-time quasi-sliding-mode control strategies, IEEE Transactions on Industrial Electronics, Vol. 45, No. 4, pp. 633-637DOI
17 
J. H. Hong, J. S. Kim, Y. S. Quan, T. Park, C. S. an, C. C. Chung, 2022, Adaptive cruise control with motion sickness reduction: Data-driven human model and model predictive control approach, pp. 1464-1470DOI

์ €์ž์†Œ๊ฐœ

์ž„์ค€์ˆ˜(Joonsu Im)
../../Resources/kiee/KIEE.2026.75.2.426/au1.png

He received a B.S. degree in Electrical Engineering from Pai Chai University, Daejeon, South Korea, in 2024. He is currently pursuing an M.S. degree in Electrical and Electronic Engineering at Pai Chai University in 2025.

๊น€์ฒญํ›ˆ(Chunghun kim)
../../Resources/kiee/KIEE.2026.75.2.426/au2.png

He received the B.S. degree in electronic electricity computer engineering from Hanyang University, Seoul, South Korea, in 2011, and the unified M.S. and Ph.D. degrees in electrical engineering from Hanyang University, in 2018. In 2017, he was a Visiting Scholar with the National Renewable Energy Laboratory, Colorado, USA. In 2018, he was a Postdoctoral Researcher with the Department of Electrical Engineering, Kyungpook National University, Deagu, South Korea, where he worked as a Research Professor, in 2019. He is currently an Assistant Professor with the Department of Electrical Electronic Engineering, Pai Chai University, Daejeon, South Korea. His current research interests include integration of renewable energy and optimization of distributed energy resource in micro-grid.

๊น€์ง„์„ฑ(Jin sung Kim)
../../Resources/kiee/KIEE.2026.75.2.426/au3.png

Kim received his B.S. degree in electronic engineering from Kookmin University, Seoul, South Korea, in 2014 and his M.S. and Ph.D. in electrical engineering from Hanyang University, Seoul, in 2019 and 2024, respectively. From 2024 to 2025, he was a Visiting Scholar with the Department of Mechanical Engineering, University of California, Berkeley, CA, USA. In 2025, he joined as a Faculty Member of the Department of Electrical and Electronic Engineering at Pai Chai University, Daejeon, South Korea. His research interests include data-driven control, autonomous driving, optimal control, and artificial intelligence.