KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2018-06
(Vol.67 No.06)
10.5370/KIEE.2018.67.6.767
Journal XML
XML
PDF
INFO
REF
References
1
Schmidhuber J., 2015, Deep Learning in Neural Networks: An Overview, Neural Networks, Vol. 61, pp. 85-117
2
LeCun Y., Bengio Y., Hinton G., 2015, Deep learning, Nature, Vol. 521, pp. 436-444
3
Goldberg J. D., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA
4
Stanley K. O., Miikkulainen R., 2004, Competitive coevolution through evolutionary complexification, Journal of Artificial Intelligence Research, Vol. 21, No. , pp. 63-100
5
Stanley K. O., D’Ambrosio D. B., Gauci J., 2009, A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks, Artificial Life, Vol. 15, No. 2, pp. 185-212
6
Stanley K. O., 2007, Compositional pattern producing networks: A novel abstraction of development, Genetic Programming and Evolvable Machines Special Issue on Dev. Sys., Vol. 8, No. 2, pp. 131-162
7
Fernando C., 2016, Convolution by Evolution: Differentiable Pattern Producing Networks, In Proceedings of the 2016 Genetic and Evolutionary Computation Conference, Denver, CO, USA, pp. 109-116
8
Rikhtegar A., Pooyan M., Manzuri-Shalmani M., 2016, Genetic algorithm-optimised structure of convolutional neural network for face recognition applications, IET Computer Vision, Vol. 10, No. 6, pp. 559-566
9
Xie L., Yuille A., Genetic CNN, CVPR 2017
10
Suganuma M., Shirakawa S., Nagao T., 2017, A Genetic Programming Approach to Designing Convolutional Neural Network Architectures, Proceedings of GECCO 2017, pp. 497-504
11
LeCun , Yann , 1998, Gradient-based learning applied to document recognition, Proceedings of the IEEE, pp. 2278-2324
12
Koza J. R., 1992, Genetic Programming: On the Programming of Computers by Means of Natural Selection, The MIT Press
13
Miller J., Thomson P., 2000, Cartesian Genetic Programming, EuroGP 2000. LNCS, Springer, Vol. 1802, pp. 121-132
14
Simonyan K., Zisserman A., 2014, Very Deep Convolutional Networks for Large-Scale Image Recognition, International Conference on Learning Representations
15
Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V., Rabinovich A., 2015, Going Deeper with Convolutions, Computer Vision and Pattern Recognition
16
He K., Zhang X., Ren S., Sun J., 2016, Deep Residual Learning for Image Recognition, Computer Vision and Pattern Recognition
17
Zagoruyko S., Komodakis N., 2016, Wide Residual Networks, arXiv: 1605.07146
18
Xie L., Wang J., Lin W., Zhang B., Tian Q., 2016, Towards Reversal-Invariant Image Representation, International Journal on Computer Vision
19
Simonyan K., Zisserman A., 2014, Very Deep Convolutional Networks for Large-Scale Image Recognition, International Conference on Learning Representations
20
He K., Zhang X., Ren S., Sun J., 2016, Deep Residual Learning for Image Recognition, Computer Vision and Pattern Recognition
21
Huang G., Liu Z., Weinberger K., 2016, Densely Connected Convolutional Networks, arXiv: 1608.06993