• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Schmidhuber J., 2015, Deep Learning in Neural Networks: An Overview, Neural Networks, Vol. 61, pp. 85-117DOI
2 
LeCun Y., Bengio Y., Hinton G., 2015, Deep learning, Nature, Vol. 521, pp. 436-444DOI
3 
LeCun Yann, et al., 1998, Gradient based learning applied to document recognition, Proceedings of the IEEE, pp. 2278-2324DOI
4 
Park Yunwon, Kweon In So, 2016, Ambiguous Surface Defect Image Classification of AMOLEDD is playsin Smartphones, IEEE Trans. Industrial Informatics, Vol. 12, No. 2, pp. 597-607DOI
5 
Simonyan K., Zisserman A., 2014, Very Deep Convolutional Networks for Large-Scale Image Recognition, International Conference on Learning RepresentationsGoogle Search
6 
Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V., Rabinovich A., 2015, Going Deeper with Convolutions, Computer Vision and Pattern RecognitionGoogle Search
7 
He K., Zhang X., Ren S., Sun J., 2016, Deep Residual Learning for Image Recognition, Computer Vision and Pattern RecognitionGoogle Search
8 
Zagoruyko S., Komodakis N., 2016, Wide Residual Networks, arXiv: 1605.07146Google Search
9 
Fernando C. et al., 2016, Convolution by Evolution: Differentiable Pattern Producing Networks, In Proceedings of the 2016 Genetic and Evolutionary Computation Conference, Denver, CO, USA, pp. 109-116DOI
10 
Rikhtegar A., Pooyan M., Manzuri-Shalmani M., 2016, Genetic algorithm-optimised structure of convolutional neural network for face recognition applications, IET Computer Vision, Vol. 10, No. 6, pp. 559-566DOI
11 
Xie L., Yuille A., 2017, Genetic CNN, CVPRGoogle Search
12 
Suganuma M., Shirakawa S., Nagao T., 2017, A Genetic Programming Approach to Designing Convolutional Neural Network Architectures, Proceedings of GECCO 2017, pp. 497-504DOI
13 
Zoph B., Le Q. V., 2016, Neural Architecture Search with Reinforcement Learning, CoRR abs/1611.01578Google Search
14 
Liu C., Zoph B., Shlens J., Hua W., Li L. J., Fei-Fei L., Murphy K., 2018, Progressive Neural Architecture Search, ECCVGoogle Search
15 
Real E., Aggarwal A., Huang Y., Le Q. V., 2018, Aging Evolution for Image Classifier Architecture SearchGoogle Search
16 
Hu H., Peng R., Tai Y. W., Tang C. K., 2016, Network trimming: A data-driven neuron pruning approach towards efficient deep architectures, arXiv preprint arXiv:1607.03250Google Search
17 
Li H., Kadav A., Durdanovic I., Samet H., Graf H. P., 2016, Pruning Filters for Efficient ConvNets, CoRR abs/1608.08710Google Search
18 
Huang Q., Zhou K., You S., Neumann U., 2018, Learning to prune filters in convolutional neural networks, arXiv preprint arXiv:1801.07365Google Search
19 
Chen C., Tung F., Vedula N., Mori G., 2018, Constraint- Aware Deep Neural Network Compression, ECCV, Vol. 8, pp. 409-424Google Search
20 
Han S., Mao H., Dally W. J., 2015, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, arXiv preprint arXiv:1510.00149Google Search
21 
Luo J. H., Wu J., Lin W., 2017, ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression, ICCV, pp. 5068-5076Google Search
22 
Kim J., Lee M., Choi J., Seo K., 2018, GA-based Filter Selection for Representation in Convolutional Neural Networks, ECCV 2018 Workshop on Compact and Efficient Feature Representation and Learning in Computer VisionGoogle Search
23 
Seo K., 2018, Analysis of evolutionary optimization methods for CNN structures, Transactions of the Korean Institute of Electrical Engineers, Vol. 67, No. 6, pp. 767-772Google Search