KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2018-12
(Vol.67 No.12)
10.5370/KIEE.2018.67.12.1665
Journal XML
XML
PDF
INFO
REF
References
1
Schmidhuber J., 2015, Deep Learning in Neural Networks: An Overview, Neural Networks, Vol. 61, pp. 85-117
2
LeCun Y., Bengio Y., Hinton G., 2015, Deep learning, Nature, Vol. 521, pp. 436-444
3
LeCun Yann, et al., 1998, Gradient based learning applied to document recognition, Proceedings of the IEEE, pp. 2278-2324
4
Park Yunwon, Kweon In So, 2016, Ambiguous Surface Defect Image Classification of AMOLEDD is playsin Smartphones, IEEE Trans. Industrial Informatics, Vol. 12, No. 2, pp. 597-607
5
Simonyan K., Zisserman A., 2014, Very Deep Convolutional Networks for Large-Scale Image Recognition, International Conference on Learning Representations
6
Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V., Rabinovich A., 2015, Going Deeper with Convolutions, Computer Vision and Pattern Recognition
7
He K., Zhang X., Ren S., Sun J., 2016, Deep Residual Learning for Image Recognition, Computer Vision and Pattern Recognition
8
Zagoruyko S., Komodakis N., 2016, Wide Residual Networks, arXiv: 1605.07146
9
Fernando C. et al., 2016, Convolution by Evolution: Differentiable Pattern Producing Networks, In Proceedings of the 2016 Genetic and Evolutionary Computation Conference, Denver, CO, USA, pp. 109-116
10
Rikhtegar A., Pooyan M., Manzuri-Shalmani M., 2016, Genetic algorithm-optimised structure of convolutional neural network for face recognition applications, IET Computer Vision, Vol. 10, No. 6, pp. 559-566
11
Xie L., Yuille A., 2017, Genetic CNN, CVPR
12
Suganuma M., Shirakawa S., Nagao T., 2017, A Genetic Programming Approach to Designing Convolutional Neural Network Architectures, Proceedings of GECCO 2017, pp. 497-504
13
Zoph B., Le Q. V., 2016, Neural Architecture Search with Reinforcement Learning, CoRR abs/1611.01578
14
Liu C., Zoph B., Shlens J., Hua W., Li L. J., Fei-Fei L., Murphy K., 2018, Progressive Neural Architecture Search, ECCV
15
Real E., Aggarwal A., Huang Y., Le Q. V., 2018, Aging Evolution for Image Classifier Architecture Search
16
Hu H., Peng R., Tai Y. W., Tang C. K., 2016, Network trimming: A data-driven neuron pruning approach towards efficient deep architectures, arXiv preprint arXiv:1607.03250
17
Li H., Kadav A., Durdanovic I., Samet H., Graf H. P., 2016, Pruning Filters for Efficient ConvNets, CoRR abs/1608.08710
18
Huang Q., Zhou K., You S., Neumann U., 2018, Learning to prune filters in convolutional neural networks, arXiv preprint arXiv:1801.07365
19
Chen C., Tung F., Vedula N., Mori G., 2018, Constraint- Aware Deep Neural Network Compression, ECCV, Vol. 8, pp. 409-424
20
Han S., Mao H., Dally W. J., 2015, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, arXiv preprint arXiv:1510.00149
21
Luo J. H., Wu J., Lin W., 2017, ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression, ICCV, pp. 5068-5076
22
Kim J., Lee M., Choi J., Seo K., 2018, GA-based Filter Selection for Representation in Convolutional Neural Networks, ECCV 2018 Workshop on Compact and Efficient Feature Representation and Learning in Computer Vision
23
Seo K., 2018, Analysis of evolutionary optimization methods for CNN structures, Transactions of the Korean Institute of Electrical Engineers, Vol. 67, No. 6, pp. 767-772