• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
N. G. DeSouza, 2002, Vision for mobile robot navigation: A survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 2, pp. 237-267DOI
2 
S. Thrun, A. Bücken, 1996, Integrating grid-based and topological maps for mobile robot navigation, in Proceedings of the National Conference on Artificial Intelligence.Google Search
3 
D. E. O'Leary, 1996, AI and Navigation on the Internet and Intranet, IEEE Expert Vol.11, Vol. 2, pp. 8-10DOI
4 
D. A. Pomerleau, 1991, Efficient training of artificial neural networks for autonomous navigation, Neural Computation, Vol. 3, No. 1, pp. 88-97DOI
5 
M. V. Srinivasan, W. Zhang, M. Lehrer, T.s. Collett, 1996, Honeybee navigation en route to the goal: visual flight control and odometry, Journal of Experimental Biology 199, pp. 237-244Google Search
6 
J. Soh, D. Kim, 2018, Jamming Avoidance Response Inspired by Wave-type Weakly Electric Fish, Journal of Bionic Engineering, Vol. 15, pp. 982-991DOI
7 
M. Sim, D. Kim, 2011, Electrolocation based on tail-bending movements in weakly electric fish, Journal of Experimental Biology, Vol. 213, No. 14, pp. 2443-2450DOI
8 
D. Kim, 2006, Neural network mechanism for the orientation behavior of sand scorpions towards prey, IEEE Trans. on Neural Networks, Vol. 17, pp. 1070-1076DOI
9 
S.-E. Yu, D. Kim, 2011, Landmark vectors with quantized distance information for homing navigation, Adaptive Behavior, Vol. 19, No. 2, pp. 121-141DOI
10 
J. Carmena, D. Kim, J. Hallam, 2001, Artificial ears for a biomimetic sonarhead: From multiple reflectors to surfaces, Artificial Life, Vol. 7, No. 2, pp. 147-169DOI
11 
B. Baddeley, 2011, Holistic visual encoding of ant-like routes: Navigation without waypoints, Adaptive Behavior, Vol. 19, No. 1, pp. 3-15DOI
12 
R. Menzel, et al., 2005, Honey bees navigate according to a map-like spatial memory, Proceedings of the National Academy of Sciences, Vol. 102, No. 8, pp. 3040-3045DOI
13 
C. Sanchez, H. Arribart, M. Madeleine, G. Guille, 2005, Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nature Materials, Vol. 4, No. 4, pp. 277-DOI
14 
A. Denuelle, R. Strydom, M. V. Srinivasan, 2015, Snapshot-based control of UAS hover in outdoor environments, in Proceedings of 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)DOI
15 
B. A. Cartwright, T. S. Collett, 1983, Landmark learning in bees, Journal of Comparative Physiology, Vol. 151, No. 4, pp. 521-543DOI
16 
P. Viola, M. J. Jones, 2004, Robust real-time face detection, International Journal of Computer Vision, Vol. 57, No. 2, pp. 137-154DOI
17 
Takeshi Mita, Toshimitsu Kaneko, Osamu Hori, 2005, Joint haar-like features for face detection, in Proceedings of Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, Vol. 2DOI
18 
C. Lee, D. Kim, 2018, Visual Homing Navigation With Haar-Like Features in the Snapshot, IEEE Access, Vol. 6, No. , pp. 33666-33681DOI
19 
M. Collett, T. S. Collett, 2000, How do insects use path integration for their navigation?, Biological Cybernetics, Vol. 83, No. 3, pp. 245-259DOI
20 
S.-E. Yu, D. Kim, 2010, Distance estimation method with snapshot landmark images in the robotic homing navigation, in 2010 IEEE/RSJ International Conference on Intelligent Robots and SystemsDOI
21 
Chao Pan, et al., 2011, An optical flow-based integrated naviga- tion system inspired by insect vision, Biological Cybernetics, Vol. 105, No. 3-4, pp. 239-252DOI
22 
Phillip Ian Wilson, John Fernandez, 2006, Facial feature detection using Haar classifiers, Journal of Computing Sciences in Colleges, Vol. 21, No. 4, pp. 127-133Google Search
23 
R. Möller, et al., 2007, Visual homing in environments with anisotropic landmark distribution, Autonomous Robots, Vol. 23, No. 3, pp. 231-245DOI
24 
El. Jundi Basil, et al., 2016, A snapshot-based mechanism for celestial orientation, Current Biology, Vol. 26, No. 11, pp. 1456-1462DOI
25 
S. Sra, S. Nowozin, S. J. Wright, eds., 2012, Optimization for machine learning., Mit PressGoogle Search