KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2019-11
(Vol.68 No.11)
10.5370/KIEE.2019.68.11.1411
Journal XML
XML
PDF
INFO
REF
References
1
S. Y. Hwang, S. H. Kim, 2012, An exploratory study of the electronic-CRM activities in tourism industry: The case of Travel agencies, Hotels, Airlines and Restaurants, Tourism Sciences, Vol. 32, No. 6, pp. 383-403
2
C. Bull, 2003, Strategic issues in customer relationship management (CRM) implementation, Business Process Mgmt Journal, Vol. 9, No. 5, pp. 592-602
3
P. Radoslav Kotorov, 2002, Ubiquitous organization: organizational design for e-CRM, Business Process Management Journal, Vol. 3, No. 3, pp. 218-232
4
S. L. Pan, J. N. Lee, 2003, Using e-CRM for a unified view of the customer, Communications of the ACM, Vol. 46, No. 4, pp. 95-99
5
Y. Cho, R. Hiltz, J. Fjermestad, 2002, An Analysis of Online Customer Complaints: Implications for Web Complaint Management, in Proceedings of the 35th Annual Hawaii International Conference of System Sciences, Vol. ieee, No. , pp. 2308-2317
6
C. Voigt, C. S. Montero, M. Menichinelli, 2016, An empirically informed taxonomy for the Maker Movement, in Proc. of International Conference on Internet Science, Vol. springer, No. cham, pp. 189-204
7
J. Grus, 2019, Data science from scratch: first principles with Python, O'Reilly Media, pp. 239-240
8
C. Park, J. Kim, 2018, Trend Analysis in Maker Movement Using Text Mining, Korea Contents Association, Vol. 18, No. 12, pp. 468-488
9
H. Lee, P. Kang, 2016, Analysis of reserch trends in technology management using topic modeling, Korean Institute of Industrial Engineers, Vol. 4, pp. 5208-5229
10
T. Kim, H. Choi, H. Lee, 2016, A Study on the Research Trends in Fintech using Topic Modeling, Korea Academia Industrial cooperation Society, Vol. 17, No. 11, pp. 640-681
11
S. Na, J. Kim, M. Jung, J. Ahn, 2016, Trend anlysis using topic modeling for simulation studies, Korea Society for Simulation, Vol. 25, No. 3, pp. 107-116
12
J. L. Boyd-graber, D. M. Blei, 2009, Syntactic Topic Models, Advances in Neural Information Processing Systems, Vol. , No. , pp. 185-192
13
X. Quan, C. Kit, Y. Ge, S. J. Pan, Jun 2015, Short and Sparse Text Topic Modeling via Self-Aggregation, in Proc. of the 24th International Joint Conference on Artificial Intelligence
14
X. Yan, J. Guo, Y. Lan, X. Cheng, 2013, A biterm topic model for short texts, Proceedings of the 22nd International Conference on World Wide Web, ACM, pp. 1445-1456
15
C. Li, H. Wang, Z. Zhang, A. Sun, 2016, Topic modeling for short texts with auxiliary word embeddings, Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, pp. 165-174
16
A. Song, Y. Park, 2018, WV-BTM: A technique on improving accuracy of topic model for short texts in SNS, Digital Contents Society, Vol. 19, No. 1, pp. 51-58
17
T. Mikolov, K. Chen, G. Corrado, J. Dean, 2013, Efficient Estimation of Word Representations in Vector Space, arXiv preprint arXiv, Vol. 1301, No. 3781
18
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, 2013, Distributed Representations of Words and Phrases and their Compositionality, Advances in Neural Information Processing Systems, pp. 3111-3119
19
H. Kang, J. Yang, 2019, Optimization of Word2vec Models for Korean Word Embeddings, Digital Contents Society, Vol. 20, No. 4, pp. 825-833
20
M. Claesen, B. De Moor, 2015, Hyperparameter search in machine learning, arXiv preprint arXiv:1502.02127
21
Sepp Hochreiter, J. Schmidhuber, 1997, Long short-term memory, Neural computation, Vol. 9, No. 8, pp. 1735-1780
22
Ashlee Vance, 2018, This man is the godfather the AI Community Wants to Forget, Bloomberg Businessweek
23
T. Yun, C. Park, T. H, S. Kim, 2016, Malware Classification based on LSTM, Korea Information Science Society, Vol. 12, pp. 772-774
24
Sepp Hochreiter, J. Schmidhuber, 1997, LSTM can solve hard long time lag problems, Advances in Neural Information Processing Systems, pp. 473-479
25
Aurelien, 2018, Hands-On Machine Learning with Scikit-Learn & TensorFlow, O’REILLY, pp. 409-411
26
Jesse Davis, aJesse Goadrich, 2006, The relationship between Precision-Recall and ROC curves, Proceedings of the 23rd International Conference on Machine Learning, ACM, pp. 233-240