• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. Y. Hwang, S. H. Kim, 2012, An exploratory study of the electronic-CRM activities in tourism industry: The case of Travel agencies, Hotels, Airlines and Restaurants, Tourism Sciences, Vol. 32, No. 6, pp. 383-403Google Search
2 
C. Bull, 2003, Strategic issues in customer relationship management (CRM) implementation, Business Process Mgmt Journal, Vol. 9, No. 5, pp. 592-602DOI
3 
P. Radoslav Kotorov, 2002, Ubiquitous organization: organizational design for e-CRM, Business Process Management Journal, Vol. 3, No. 3, pp. 218-232DOI
4 
S. L. Pan, J. N. Lee, 2003, Using e-CRM for a unified view of the customer, Communications of the ACM, Vol. 46, No. 4, pp. 95-99Google Search
5 
Y. Cho, R. Hiltz, J. Fjermestad, 2002, An Analysis of Online Customer Complaints: Implications for Web Complaint Management, in Proceedings of the 35th Annual Hawaii International Conference of System Sciences, Vol. ieee, No. , pp. 2308-2317DOI
6 
C. Voigt, C. S. Montero, M. Menichinelli, 2016, An empirically informed taxonomy for the Maker Movement, in Proc. of International Conference on Internet Science, Vol. springer, No. cham, pp. 189-204DOI
7 
J. Grus, 2019, Data science from scratch: first principles with Python, O'Reilly Media, pp. 239-240Google Search
8 
C. Park, J. Kim, 2018, Trend Analysis in Maker Movement Using Text Mining, Korea Contents Association, Vol. 18, No. 12, pp. 468-488DOI
9 
H. Lee, P. Kang, 2016, Analysis of reserch trends in technology management using topic modeling, Korean Institute of Industrial Engineers, Vol. 4, pp. 5208-5229Google Search
10 
T. Kim, H. Choi, H. Lee, 2016, A Study on the Research Trends in Fintech using Topic Modeling, Korea Academia Industrial cooperation Society, Vol. 17, No. 11, pp. 640-681DOI
11 
S. Na, J. Kim, M. Jung, J. Ahn, 2016, Trend anlysis using topic modeling for simulation studies, Korea Society for Simulation, Vol. 25, No. 3, pp. 107-116DOI
12 
J. L. Boyd-graber, D. M. Blei, 2009, Syntactic Topic Models, Advances in Neural Information Processing Systems, Vol. , No. , pp. 185-192Google Search
13 
X. Quan, C. Kit, Y. Ge, S. J. Pan, Jun 2015, Short and Sparse Text Topic Modeling via Self-Aggregation, in Proc. of the 24th International Joint Conference on Artificial IntelligenceGoogle Search
14 
X. Yan, J. Guo, Y. Lan, X. Cheng, 2013, A biterm topic model for short texts, Proceedings of the 22nd International Conference on World Wide Web, ACM, pp. 1445-1456DOI
15 
C. Li, H. Wang, Z. Zhang, A. Sun, 2016, Topic modeling for short texts with auxiliary word embeddings, Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, pp. 165-174DOI
16 
A. Song, Y. Park, 2018, WV-BTM: A technique on improving accuracy of topic model for short texts in SNS, Digital Contents Society, Vol. 19, No. 1, pp. 51-58DOI
17 
T. Mikolov, K. Chen, G. Corrado, J. Dean, 2013, Efficient Estimation of Word Representations in Vector Space, arXiv preprint arXiv, Vol. 1301, No. 3781Google Search
18 
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, 2013, Distributed Representations of Words and Phrases and their Compositionality, Advances in Neural Information Processing Systems, pp. 3111-3119Google Search
19 
H. Kang, J. Yang, 2019, Optimization of Word2vec Models for Korean Word Embeddings, Digital Contents Society, Vol. 20, No. 4, pp. 825-833DOI
20 
M. Claesen, B. De Moor, 2015, Hyperparameter search in machine learning, arXiv preprint arXiv:1502.02127Google Search
21 
Sepp Hochreiter, J. Schmidhuber, 1997, Long short-term memory, Neural computation, Vol. 9, No. 8, pp. 1735-1780DOI
22 
Ashlee Vance, 2018, This man is the godfather the AI Community Wants to Forget, Bloomberg BusinessweekGoogle Search
23 
T. Yun, C. Park, T. H, S. Kim, 2016, Malware Classification based on LSTM, Korea Information Science Society, Vol. 12, pp. 772-774Google Search
24 
Sepp Hochreiter, J. Schmidhuber, 1997, LSTM can solve hard long time lag problems, Advances in Neural Information Processing Systems, pp. 473-479Google Search
25 
Aurelien, 2018, Hands-On Machine Learning with Scikit-Learn & TensorFlow, O’REILLY, pp. 409-411Google Search
26 
Jesse Davis, aJesse Goadrich, 2006, The relationship between Precision-Recall and ROC curves, Proceedings of the 23rd International Conference on Machine Learning, ACM, pp. 233-240DOI