KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2019-12
(Vol.68 No.12)
10.5370/KIEE.2019.68.12.1580
Journal XML
XML
PDF
INFO
REF
References
1
M. W. Geis, 1992, Device quality diamond substrates, Dia. and related Mater., Vol. 1, No. 5-6, pp. 684-687
2
C. P. Klages, 1993, Chemical vapor deposition of diamond, Appl. Phys. A, Vol. 56, pp. 513-526
3
H. Yasuo, 2008, Metal-diamond semiconductor interface and photodiode application, Applied Surface Sci., Vol. 254, No. 19, pp. 6268-6272
4
Koide Kato, 2012, Diamond Bipolar Junction Transistor Device with Phosphorus-Doped Diamond Base Layer, Dia. Relat. Mater., Vol. 27–28, pp. 19-22
5
D. Meng, 2015, Thermal stability of ultrahard polycrystal- line diamond composite materials, J. Superhard Materials, Vol. 37, No. 2, pp. 67-72
6
T. Matsumoto, et al., 2016, Inversion channel diamond metaloxide- semiconductor field-effect transistor with normally off characteristics, Scientific Reports, Vol. 6, pp. 31585
7
P. Moritz, E. Berdermann, K. Blasche, H. Stelzer, B. Voss, 2001, Broadband electronics for CVD-diamond detectors, Dia. and Related Mater., Vol. 10, No. 9–10, pp. 1765-1769
8
Sun Huarui, 2015, Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications, Appl. Phys. Lett., Vol. 106, pp. 111906
9
Dumpala Ravikumar, 2015, High wear performance of the dual-layer graded composite diamond coated cutting tools, J. of Refrac. Metals and Hard Mater., Vol. 48, pp. 24-30
10
Shikata Shinichi, 2016, Single crystal diamond wafers for high power electronics, Dia. & Related Mater., Vol. 65, pp. 168-175
11
T. Wade, 2017, Effect of surface roughness and H–termination chemistry on diamond's semiconducting surface conductance, Dia. and related Mater., Vol. 76, pp. 79-85
12
B. R. Stoner, G. H. M. Ma, S. D. Wolter, J. T. Glass, 1992, Characterization of bias enhanced nucleation of diamond on silicon by in vucuo surface analysis and transmission electron microscopy, Phys. Rev. B, Vol. 45, No. 19, pp. 11067
13
R. Csencsits, 1993, Diamond nucleation during biased chemical vapor deposition, in Evolution of Surface and Thin Film Microstructure Symposium, Pittsburgh, PA, MRS, pp. 695-700
14
M. Katoh, M. Aoki, H. Kawarada, 1994, Plasma-enhanced diamond nucleation on Si, Jpn. J. Appl. Phys., Vol. 33, No. 2a, pp. l194-L196
15
B. R. Stoner, et al., 1993, Highly oriented, textured diamond films on silicon via bias-enhanced nucleation and textured growth, J. Mater. Res., Vol. 8, No. 6, pp. 1334-1340
16
S. Han, 2012, Effect of oxygen for diamond film synthesis with c-hexane in microwave plasma enhanced CVD process, J. Electr. Eng. Technol., Vol. 7, No. 6, pp. 983-989
17
R. Haubner, 2005, Comparison of sulfur, boron, nitrogen and phosphorus additions during low-pressure diamond deposition, Dia. Relat. Mater., Vol. 14, No. 3-7, pp. 355-363
18
Liu Ha, 2019, Single Crystal Diamond Deposited by Dual Radio-Frequency Plasma Jet CVD with High Growth Rate, Crystals, Vol. 9, No. 1, pp. 32
19
Birrellet al James, 2005, Interpretation of the Raman spectra of ultrananocrystalline diamond, Diamond & Related Materials, Vol. 14, pp. 86-92