• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Sun-Gi Lee, et al., 2005, A Case Study on the Easterly Wind Characteristics around Gangneung City, Journal of Atmosphere, Vol. 15, No. 4, pp. 191-202DOI
2 
J. G. Lee, J. S. Lee, 200, A Numerical Study of Yeongdong Heavy Snowfall Events Associated with Easterly, Asia-Pacific Journal of Atmospheric Sciences, Vol. 39, No. 4, pp. 475-490Google Search
3 
Ziqi Cao, et al., 2015, Interannual increase of regional haze-fog in North China Plain in summer by intensified easterly winds and orographic forcing, Atmospheric Environment, Vol. 122, pp. 154-162DOI
4 
Y. LeCun, Y. Bengio, G. Hinton, 2015, Deep learning, Nature, Vol. 521, pp. 436-444DOI
5 
Y. LeCun, et al., 1998, Gradient based learning applied to document recognition, in Proceedings of the IEEE, pp. 2278-2324DOI
6 
A. Krizhevsky, I. Sutskever, G. Hinton, 2012, ImageNet classification with deep convolutional neural networks, in NIPSDOI
7 
S. Hochreiter, J. Schmidhuber, 1997, Long short-term memory, Neural Computation, Vol. 9, No. 8, pp. 1735-1780DOI
8 
F. Gers, J. Schmidhuber, 2001, LSTM Recurrent Networks Learn Simple Context Free and Context Sensitive Languages, IEEE Transactions on Neural Networks., Vol. 12, No. 6, pp. 1333-1340DOI
9 
K. Kim, K. Seo, 2018, Deep Learning Based Prediction for Easterly Wind, in Proceedings of Information and Control Symposium CICS’2018, pp. 55-56Google Search
10 
K. Kim, K. Seo, 2019, Long Short-Term Memory Based Prediction for Easterly Wind, in Proceedings of Information and Control Symposium ICS’2019, pp. 21-22Google Search