• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. H. Kang, 2019, Solar Energy Industry Trends in Q4 of 2018, Report, Vol. 2019, No. 02DOI
2 
J. Shi, W. J. Lee, Y. Liu, Y. Yang, P. Wang, 2012, Forecasting power output of photovoltaic systems based on weather classification and support vector machines, IEEE Transactions on Industry Applications, Vol. 48, No. 3, pp. 1064-1069DOI
3 
N. Sharma, P. Sharma, D. Irwin, P. Shenoy, 2011, Predicting solar generation from weather forecasts using machine learning, in 2011 IEEE International Conference on Smart Grid Communications (Smart-GridComm),ieeeDOI
4 
M. Ceci, R. Corizzo, F. Fumarola, D. Malerba, A. Rashkovska, 2017, Predictive modeling of pv energy production: How to set up the learning task for a better prediction?, IEEE Transactions on Industrial Informatics, Vol. 13, No. 3, pp. 956-966DOI
5 
J. J. Song, Y. S. Jeong, S. H. Lee, Mar 2014, Analysis of prediction model for solar power generation, Journal of Digital Convergence, Vol. 12, No. 3, pp. 243-248DOI
6 
D. H. Shin, J. H. Park, C. B. Kim, 2017, Photovoltaic Generation Forecasting Using Weather Forecast and Predictive Sunshine and Radiation, Journal of Advanced Navigation TechnologyDOI
7 
S. M. Lee, W. J. Lee, 2016, Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning, Proceedings of the Korea Information Processing Society Conference, Vol. 5, No. 10DOI
8 
H. J. Lee, 2016, Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction, Journal of Korea Multimedia Society, Vol. 19, No. 8DOI
9 
M. Moharrampour, A. Mehrabi, H. Hajikandi, S. Sohrabi, J. Vakili, 2013, Comparison of Support Vector Machines (SVM) and Autoregressive integrated moving average (ARIMA) in daily flow forecasting, Journal of River Engineering, Vol. 1, No. 1Google Search
10 
S.-K. Kwon, Y.-S. Lee, D.-S. Kim, H.-S. Jung, 2019, Classification of Forest Vertical Structure Using Machine Learning Analysis, Korean Journal of Remote Sensing, Vol. 35, No. 2DOI
11 
M.-J. Ding, S.-Z. Zhang, H.-D. Zhong, Y.-H. Wu, L.-B. Zhang, April 2019, A Prediction Model of the Sum of Container Based on Combined BP Neural Network and SVM, J Inf Process Syst, Vol. 15, No. 2Google Search
12 
I. Oh, 2017, Machine Learning, HANBIT Academy, Inc.Google Search