KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2019-12
(Vol.68 No.12)
10.5370/KIEE.2019.68.12.1662
Journal XML
XML
PDF
INFO
REF
References
1
J. H. Kang, 2019, Solar Energy Industry Trends in Q4 of 2018, Report, Vol. 2019, No. 02
2
J. Shi, W. J. Lee, Y. Liu, Y. Yang, P. Wang, 2012, Forecasting power output of photovoltaic systems based on weather classification and support vector machines, IEEE Transactions on Industry Applications, Vol. 48, No. 3, pp. 1064-1069
3
N. Sharma, P. Sharma, D. Irwin, P. Shenoy, 2011, Predicting solar generation from weather forecasts using machine learning, in 2011 IEEE International Conference on Smart Grid Communications (Smart-GridComm),ieee
4
M. Ceci, R. Corizzo, F. Fumarola, D. Malerba, A. Rashkovska, 2017, Predictive modeling of pv energy production: How to set up the learning task for a better prediction?, IEEE Transactions on Industrial Informatics, Vol. 13, No. 3, pp. 956-966
5
J. J. Song, Y. S. Jeong, S. H. Lee, Mar 2014, Analysis of prediction model for solar power generation, Journal of Digital Convergence, Vol. 12, No. 3, pp. 243-248
6
D. H. Shin, J. H. Park, C. B. Kim, 2017, Photovoltaic Generation Forecasting Using Weather Forecast and Predictive Sunshine and Radiation, Journal of Advanced Navigation Technology
7
S. M. Lee, W. J. Lee, 2016, Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning, Proceedings of the Korea Information Processing Society Conference, Vol. 5, No. 10
8
H. J. Lee, 2016, Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction, Journal of Korea Multimedia Society, Vol. 19, No. 8
9
M. Moharrampour, A. Mehrabi, H. Hajikandi, S. Sohrabi, J. Vakili, 2013, Comparison of Support Vector Machines (SVM) and Autoregressive integrated moving average (ARIMA) in daily flow forecasting, Journal of River Engineering, Vol. 1, No. 1
10
S.-K. Kwon, Y.-S. Lee, D.-S. Kim, H.-S. Jung, 2019, Classification of Forest Vertical Structure Using Machine Learning Analysis, Korean Journal of Remote Sensing, Vol. 35, No. 2
11
M.-J. Ding, S.-Z. Zhang, H.-D. Zhong, Y.-H. Wu, L.-B. Zhang, April 2019, A Prediction Model of the Sum of Container Based on Combined BP Neural Network and SVM, J Inf Process Syst, Vol. 15, No. 2
12
I. Oh, 2017, Machine Learning, HANBIT Academy, Inc.