KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2020-01
(Vol.69 No.1)
10.5370/KIEE.2020.69.1.107
Journal XML
XML
PDF
INFO
REF
References
1
K.-W. Jung, Y.-J. Won, H.-J. Kong, E. S. Lee, 2019, Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2016, Cancer research and treatment: official journal of Korean Cancer Association, Vol. 51, pp. 417
2
Healthcare big data hub, 2019, The treatment statistics by Health Insurance Review and Assessment Service disease
3
S. S. Park, B. Y. Ryu, H. S. Kim, H. K. Kim, Y. H. Choi, S. J. Kim, 2010, Gastric Polyposis Associated with Gastric Cancer, Journal of the Korean Surgical Society, Vol. 78, pp. 249-252
4
H. Kim, Y. Hwang, H. Sung, J. Jang, C. Ahn, S. G. Kim, 2018, Effectiveness of gastric cancer screening on gastric cancer incidence and mortality in a community-based prospective cohort, Cancer research and treatment: official journal of Korean Cancer Association, Vol. 50, pp. 582
5
T. Kanesaka, T.-C. Lee, N. Uedo, K.-P. Lin, H.-Z. Chen, J.-Y. Lee, 2018, Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging, Gastrointestinal endoscopy, Vol. 87, No. , pp. 1339-1344
6
T. Hirasawa, K. Aoyama, T. Tanimoto, S. Ishihara, S. Shichijo, T. Ozawa, 2018, Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images, Gastric Cancer, Vol. 21, pp. 653-660
7
Y. Cong, S. Wang, J. Liu, J. Cao, Y. Yang, J. Luo, 2015, Deep sparse feature selection for computer aided endoscopy diagnosis, Pattern Recognition, Vol. 48, pp. 907-917
8
Y. Zhu, Q.-C. Wang, M.-D. Xu, Z. Zhang, J. Cheng, Y.-S. Zhong, 2019, Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy, Gastrointestinal Endoscopy, Vol. 89, pp. 806-815. e1
9
M. Billah, S. Waheed, M. M. Rahman, 2017, An automatic gastrointestinal polyp detection system in video endoscopy using fusion of color wavelet and convolutional neural network features, International Journal of Biomedical Imaging, Vol. 2017
10
H. Alaskar, A. Hussain, N. Al-Aseem, P. Liatsis, D. Al-Jumeily, 2019, Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images, Sensors, Vol. 19, pp. 1265
11
K.-B. Kim, S. Kim, G.-H. Kim, 2006, Analysis system of endoscopic image of early gastric cancer, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. 89, pp. 2662-2669
12
K. Van De Sande, T. Gevers, C. Snoek, 2009, Evaluating color descriptors for object and scene recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, pp. 1582-1596
13
J. Y. Hwang, K. S. Park, J. S. Hwang, S. H. Ahn, S. K. Park, 2003, Histological comparison of endoscopic forceps biopsy with endoscopic resection in gastric mucosal elevated lesion, Korean J. Gastrointest Endosc, Vol. 26, pp. 68
14
T. Ojala, M. Pietikäinen, T. Mäenpää, 2002, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis & Machine Intelligence, pp. 971-987
15
R. M. Haralick, K. Shanmugam, 1973, Textural features for image classification, IEEE Transactions on Systems, Man, and Cybernetics, pp. 610-621
16
L.-K. Soh, C. Tsatsoulis, 1999, Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices, IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, pp. 780-795
17
C. Parmar, E. R. Velazquez, R. Leijenaar, M. Jermoumi, S. Carvalho, R. H. Mak, 2014, Robust radiomics feature quantification using semiautomatic volumetric segmentation, PloS one, Vol. 9, pp. e102107
18
J. A. Suykens, L. Lukas, J. Vandewalle, 2000, Sparse least squares Support Vector Machine classifiers, in ESANN, pp. 37-42