• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
K.-W. Jung, Y.-J. Won, H.-J. Kong, E. S. Lee, 2019, Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2016, Cancer research and treatment: official journal of Korean Cancer Association, Vol. 51, pp. 417Google Search
2 
Healthcare big data hub, 2019, The treatment statistics by Health Insurance Review and Assessment Service diseaseGoogle Search
3 
S. S. Park, B. Y. Ryu, H. S. Kim, H. K. Kim, Y. H. Choi, S. J. Kim, 2010, Gastric Polyposis Associated with Gastric Cancer, Journal of the Korean Surgical Society, Vol. 78, pp. 249-252DOI
4 
H. Kim, Y. Hwang, H. Sung, J. Jang, C. Ahn, S. G. Kim, 2018, Effectiveness of gastric cancer screening on gastric cancer incidence and mortality in a community-based prospective cohort, Cancer research and treatment: official journal of Korean Cancer Association, Vol. 50, pp. 582DOI
5 
T. Kanesaka, T.-C. Lee, N. Uedo, K.-P. Lin, H.-Z. Chen, J.-Y. Lee, 2018, Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging, Gastrointestinal endoscopy, Vol. 87, No. , pp. 1339-1344DOI
6 
T. Hirasawa, K. Aoyama, T. Tanimoto, S. Ishihara, S. Shichijo, T. Ozawa, 2018, Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images, Gastric Cancer, Vol. 21, pp. 653-660DOI
7 
Y. Cong, S. Wang, J. Liu, J. Cao, Y. Yang, J. Luo, 2015, Deep sparse feature selection for computer aided endoscopy diagnosis, Pattern Recognition, Vol. 48, pp. 907-917DOI
8 
Y. Zhu, Q.-C. Wang, M.-D. Xu, Z. Zhang, J. Cheng, Y.-S. Zhong, 2019, Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy, Gastrointestinal Endoscopy, Vol. 89, pp. 806-815. e1DOI
9 
M. Billah, S. Waheed, M. M. Rahman, 2017, An automatic gastrointestinal polyp detection system in video endoscopy using fusion of color wavelet and convolutional neural network features, International Journal of Biomedical Imaging, Vol. 2017DOI
10 
H. Alaskar, A. Hussain, N. Al-Aseem, P. Liatsis, D. Al-Jumeily, 2019, Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images, Sensors, Vol. 19, pp. 1265DOI
11 
K.-B. Kim, S. Kim, G.-H. Kim, 2006, Analysis system of endoscopic image of early gastric cancer, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. 89, pp. 2662-2669DOI
12 
K. Van De Sande, T. Gevers, C. Snoek, 2009, Evaluating color descriptors for object and scene recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, pp. 1582-1596DOI
13 
J. Y. Hwang, K. S. Park, J. S. Hwang, S. H. Ahn, S. K. Park, 2003, Histological comparison of endoscopic forceps biopsy with endoscopic resection in gastric mucosal elevated lesion, Korean J. Gastrointest Endosc, Vol. 26, pp. 68Google Search
14 
T. Ojala, M. Pietikäinen, T. Mäenpää, 2002, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis & Machine Intelligence, pp. 971-987DOI
15 
R. M. Haralick, K. Shanmugam, 1973, Textural features for image classification, IEEE Transactions on Systems, Man, and Cybernetics, pp. 610-621DOI
16 
L.-K. Soh, C. Tsatsoulis, 1999, Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices, IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, pp. 780-795DOI
17 
C. Parmar, E. R. Velazquez, R. Leijenaar, M. Jermoumi, S. Carvalho, R. H. Mak, 2014, Robust radiomics feature quantification using semiautomatic volumetric segmentation, PloS one, Vol. 9, pp. e102107DOI
18 
J. A. Suykens, L. Lukas, J. Vandewalle, 2000, Sparse least squares Support Vector Machine classifiers, in ESANN, pp. 37-42DOI