KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2020-03
(Vol.69 No.3)
10.5370/KIEE.2020.69.3.474
Journal XML
XML
PDF
INFO
REF
References
1
S. Verstockt, A. Vanoosthuyse, S. Van Hoecke, P. Lambert, R. Van de Walle, 2010, Multi-sensor fire detection by fusing visual and non-visual flame features, in Proc. of International Conference on Image and Signal Processing, pp. 333-341
2
T.-H. Chen, P.-H. Wu, Y.-C. Chiou, 2004, An early fire- detection method based on image processing, in Proc. of 2004 International Conference on Image Processing, Vol. icip'04, pp. 1707-1710
3
T. Celik, H. Demirel, 2009, Fire detection in video sequences using a generic color model, Fire Safety Journal, Vol. 44, pp. 147-158
4
Y. Wang, A. Wu, J. Zhang, M. Zhao, W. Li, N. Dong, 2016, Fire smoke detection based on texture features and optical flow vector of contour, in Proc. of 2016 12th World congress on intelligent control and automation (WCICA), pp. 2879-2883
5
P. V. K. Borges, J. Mayer, E. Izquierdo, 2008, Efficient visual fire detection applied for video retrieval, in Proc. of 2008 16th European Signal Processing Conference, pp. 1-5
6
S. Frizzi, R. Kaabi, M. Bouchouicha, J.-M. Ginoux, E. Moreau, F. Fnaiech, 2016, Convolutional neural network for video fire and smoke detection, in Proc. of IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 877-882
7
Q. Zhang, J. Xu, L. Xu, H. Guo, 2016, Deep convolutional neural networks for forest fire detection, in Proc. of 2016 International Forum on Management
8
Z. Wang, Z. Wang, H. Zhang, X. Guo, 2017, A novel fire detection approach based on CNN-SVM using tensorflow, in Proc. of International Conference on Intelligent Computing, pp. 682-693
9
D. Shen, X. Chen, M. Nguyen, W. Q. Yan, 2018, Flame detection using deep learning, in Proc. of 2018 4th International Conference on Control, Vol. automation and robotics (iccar), pp. 416-420
10
Y. LeCun, Y. Bengio, G. Hinton, 2015, Deep learning, nature, Vol. 521, pp. 436-444
11
Kwang-eun Go, Kwang-eun , 2017, Trends of object recognition and detection technology using deep learning., Robotics and Systems, pp. 17-24
12
Ayoosh Kathuria, 2018, What’s new in Yolo v3?, https://towards datascience.com/yolo-v3-object-detection-53fb7d3bfe6b, Apr 23
13
R. Girshick, J. Donahue, T. Darrell, J. Malik, 2014, Rich feature hierarchies for accurate object detection and semantic segmentation, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580-587
14
J. Redmon, A. Farhadi, 2017, YOLO9000: better, faster, stronger, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263-7271