• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. Verstockt, A. Vanoosthuyse, S. Van Hoecke, P. Lambert, R. Van de Walle, 2010, Multi-sensor fire detection by fusing visual and non-visual flame features, in Proc. of International Conference on Image and Signal Processing, pp. 333-341DOI
2 
T.-H. Chen, P.-H. Wu, Y.-C. Chiou, 2004, An early fire- detection method based on image processing, in Proc. of 2004 International Conference on Image Processing, Vol. icip'04, pp. 1707-1710DOI
3 
T. Celik, H. Demirel, 2009, Fire detection in video sequences using a generic color model, Fire Safety Journal, Vol. 44, pp. 147-158DOI
4 
Y. Wang, A. Wu, J. Zhang, M. Zhao, W. Li, N. Dong, 2016, Fire smoke detection based on texture features and optical flow vector of contour, in Proc. of 2016 12th World congress on intelligent control and automation (WCICA), pp. 2879-2883DOI
5 
P. V. K. Borges, J. Mayer, E. Izquierdo, 2008, Efficient visual fire detection applied for video retrieval, in Proc. of 2008 16th European Signal Processing Conference, pp. 1-5Google Search
6 
S. Frizzi, R. Kaabi, M. Bouchouicha, J.-M. Ginoux, E. Moreau, F. Fnaiech, 2016, Convolutional neural network for video fire and smoke detection, in Proc. of IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 877-882DOI
7 
Q. Zhang, J. Xu, L. Xu, H. Guo, 2016, Deep convolutional neural networks for forest fire detection, in Proc. of 2016 International Forum on ManagementDOI
8 
Z. Wang, Z. Wang, H. Zhang, X. Guo, 2017, A novel fire detection approach based on CNN-SVM using tensorflow, in Proc. of International Conference on Intelligent Computing, pp. 682-693DOI
9 
D. Shen, X. Chen, M. Nguyen, W. Q. Yan, 2018, Flame detection using deep learning, in Proc. of 2018 4th International Conference on Control, Vol. automation and robotics (iccar), pp. 416-420DOI
10 
Y. LeCun, Y. Bengio, G. Hinton, 2015, Deep learning, nature, Vol. 521, pp. 436-444DOI
11 
Kwang-eun Go, Kwang-eun , 2017, Trends of object recognition and detection technology using deep learning., Robotics and Systems, pp. 17-24Google Search
12 
Ayoosh Kathuria, 2018, What’s new in Yolo v3?, https://towards datascience.com/yolo-v3-object-detection-53fb7d3bfe6b, Apr 23Google Search
13 
R. Girshick, J. Donahue, T. Darrell, J. Malik, 2014, Rich feature hierarchies for accurate object detection and semantic segmentation, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580-587Google Search
14 
J. Redmon, A. Farhadi, 2017, YOLO9000: better, faster, stronger, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263-7271Google Search