• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. Guo, Q. Diao, F. Xi, Jan 2017, Vision based navigation for omni-directional mobile industrial robot, Procedia Comput. Sci., Vol. 105, pp. 20-26Google Search
2 
J. Qian, B. Zi, D. Wang, Y. Ma, D. Zhang, Sep 2017, The design and development of an omni-directional mobile robot oriented to an intelligent manufacturing system, Sensors, Vol. 17, No. 9DOI
3 
A. S. Conceicao, A. P. Moreira, P. J. Costa, 2006, Model identification of a four wheeled omni-directional mobile robot, in Proc. 7th Portuguese Conf. Autom. Control, pp. 1-2Google Search
4 
S. Chen, S. A. Billings, Aug 1992, Neural networks for nonlinear dynamic system modelling and identification, Int. J. Control, Vol. 56, pp. 319-346DOI
5 
S. Piche, J. Keeler, G. Martin, G. Boe, D. Johnson, M. Gerules, 1999, Neural network based model predictive control, in NIPS, pp. 1029-1035Google Search
6 
F. Nardi, 2000, Neural network based adaptive algorithms for nonlinear control, Ph.D. dissertation, School Aerosp. Eng., Geogia Inst. Technol., Atlanta, GA, USAGoogle Search
7 
C.-L. Li, M.-Y. Cheng, W.-C. Chang, Jan 2018, Dynamic performance improvement of direct image-based visual servoing in contour following, Int. J. Adv. Robot. Syst., Vol. 15, No. 1, pp. 486-505DOI
8 
R. L. Williams, B. E. Carter, P. Gallina, G. Rosati, Jan 2002, Dynamic model with slip for wheeled omnidirectional robots, IEEE Trans. Robot. Autom., Vol. 18, No. 3, pp. 285-293DOI
9 
A. Saenz, V. Santibanez, E. Bugarin, Apr 2018, Image based visual servoing for omnidirectional wheeled mobile robots in voltage mode, Int. J. Eng. Res., Vol. 4, No. 4, pp. 48-53Google Search
10 
J. E. C. Ortiz, 2012, Visual servoing for an omnidirectional mobile robot using the neural network - multilayer perceptron, 2012 WEA, Vol. bogota, pp. 1-6DOI
11 
Y. Liu, J. J. Zhu, R. L. Williams, J. Wu, May 2008, Omni- directional mobile robot controller based on trajectory linearization, Robot. Autom. Syst., Vol. 56, No. 5, pp. 461-479DOI
12 
Byung-ryong Lee, 2012, Focusing on the fuzzy neural network control Matlab/Simulink, Ulsan University Press, Vol. , pp. 157-170Google Search
13 
E. W. Weistein, , Levenberg-marquardt method, From MathWorld -A Wolfram Web Resource. [Online]. Available: http://mathworld. wolfarm.com/Levenberg-MarquardtMethod.htmlGoogle Search
14 
M. T. Hagan, M. B. Menhaj, Nov 1994, Training feedforward networks with the marquardt algorithm, IEEE Trans. Neural Netw., Vol. 5, No. 6, pp. 989-993DOI
15 
F. Chaumette, S. Hutchinson, Dec 2006, Visual servo control, part 1: basic approaches, IEEE Robot. Automat. Mag., Vol. 13, No. 4, pp. 82-90DOI
16 
R. Macausland, 2014, The moore-penrose inverse and least squares, Math 420: Advanced Topics in Linear Algebra, Univ. Puget Sound, Tacoma, WA, USA, pp. 1-10Google Search