• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, 2018, Global cancer statistics 2018: GLO- BOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: a cancer journal for clinicians, Vol. 68, pp. 394-424DOI
2 
K.-P. Ko, 2019, Epidemiology of gastric cancer in Korea, Journal of the Korean Medical Association, Vol. 62, pp. 398-406Google Search
3 
I. J. Choi, 2018, Helicobacter pylori eradication therapy and gastric cancer prevention, The Korean Journal of Gas- troenterology, Vol. 72, pp. 245-251DOI
4 
D.-h. Kim, H. Cho, H.-c. Cho, 2019, Gastric Lesion Classification Using Deep Learning Based on Fast and Robust Fuzzy C-Means and Simple Linear Iterative Clustering Superpixel Algorithms, Journal of Electrical Engineering & Technology, Vol. 14, pp. 2549-2556DOI
5 
D.-h. Kim, H.-c. Cho, 2018, Deep learning based computer- aided diagnosis system for gastric lesion using endoscope, The Transactions of The Korean Institute of Electrical Engineers, Vol. 67, pp. 928-933DOI
6 
D. Ergashev, Y. Im Cho, 2019, Skin Lesion Classification towards Melanoma Diagnosis using Convolutional Neural Network and Image Enhancement Methods, Journal of Korean Institute of Intelligent Systems, Vol. 29, pp. 204-209DOI
7 
Y. Zhu, Q.-C. Wang, M.-D. Xu, Z. Zhang, J. Cheng, Y.-S. Zhong, Y.-Q. Zhang, W.-F. Chen, L.-Q. Yao, P.-H. Zhou, Q.-L. Li, 2019, Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy, Gastrointestinal endoscopy, Vol. 89, pp. 806-815DOI
8 
A. Asperti, C. Mastronardo, 2017, The effectiveness of data augmentation for detection of gastrointestinal diseases from endoscopical images, arXiv.orgGoogle Search
9 
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q. V. Le, 2019, Autoaugment: Learning augmentation strategies from data, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 113-123Google Search
10 
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, 2016, Rethinking the inception architecture for computer vision, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818-2826Google Search
11 
K. He, X. Zhang, S. Ren, J. Sun, 2016, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recog- nition, pp. 770-778Google Search
12 
F. Chollet, 2017, Xception: Deep learning with depthwise separ- able convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251-1258Google Search
13 
C. Szegedy, S. Ioffe, V. Vanhoucke, A. A. Alemi, 2017, Inception-v4, inception-resnet and the impact of residual connections on learning, in Thirty-first AAAI conference on artificial intelligence, pp. 4278-4284Google Search