• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
2017, Ministry of Trade, Industry and Energy, the Republic of Korea, 재생에너지 3020 이행계획(안) 발표, https://url.kr/KQLCqBGoogle Search
2 
2016, Ministry of Trade, Industry and Energy, the Republic of Korea, 1 MW 이하 소규모 신재생발전 전력망 접속보장, https://url.kr/8phdEHGoogle Search
3 
M. M. Haque, Peter Wolfs, 2016, A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures, Renewable and Sustainable Energy Reviews 62, pp. 1195-1208DOI
4 
J. Seuss, M. J. Reno, R. J. Broderick, S. Grijalva, 2015, Improving distribution network PV hosting capacity via smart inverter reactive power support, 2015 IEEE Power & Energy Society General Meeting, pp. 1-5DOI
5 
Y. Kim, H. Myung, N. Kang, C. Lee, M. Kim, S. Kim, 2018, Operation Plan of ESS for Increase of Acceptable Product of Renewable Energy to Power System, The Transaction of KIEE 67.11, pp. 1401-1407DOI
6 
F. Capitanescu, L. F. Ochoa, H. Margossian, N. D. Hatziargyriou, 2014, Assessing the potential of network reconfiguration to improve distributed generation hosting capacity in active distribution systems, IEEE Transactions on Power Systems 30.1, pp. 346-356DOI
7 
H. Myung, 2018, The Study on the Method of Distribution of output according to Power Limit of Renewable Energy, The Transaction of KIEE 23.1, pp. 173-180DOI
8 
A. G. Patel, C. Patel, 2016, Distribution network reconfiguration for loss reduction, International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), IEEE, pp. 3937-3941Google Search
9 
A. M. Imran, M. Kowsalya, 2014, A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm, International Journal of Electrical Power & Energy Systems 62, pp. 312-322DOI
10 
B. Novoselnik, M. Baotić, 2015, Dynamic reconfiguration of electrical power distribution systems with distributed generation and storage, IFAC-PapersOnLine, Vol. 48, No. 23, pp. 136-141DOI
11 
E. A. Feinberg, J. Hu, K. Huang, 2011, A rolling horizon approach to distribution feeder reconfiguration with switching costs, In: 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), IEEE, pp. 339-344DOI
12 
F. V. Dantas, D. Z. Fitiwi, S. F. Santos, J. P. S. Catalao, June 2017, Dynamic reconfiguration of distribution network systems: A key flexibility option for res integration, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), pp. 1-6DOI
13 
M. Mosbah, S. Arif, R. D. Mohammedi, A. Hellal, Oct 2017, Optimum dynamic distribution network reconfiguration using minimum spanning tree algorithm, in 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B), pp. 1-6DOI
14 
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, Y. Chen, Oct 2017, Mastering the Game of Go without Human Knowledge, Nature - International Journal of Science, Vol. 550, pp. 354-359DOI
15 
M. Bellemare, Y. Naddaf, J. Veness, M. Bowling, 2013, The arcade learning environment: An evaluation platform for general agents, Journal of Artificial Intelligence Research, Vol. 47, pp. 253-279DOI
16 
J. Kober, J. Bagnell, J. Peters, 2013, Reinforcement learning in robotics: a survey, International Journal of Robotics Research, Vol. 32, No. 11, pp. 1238-1278DOI
17 
S. Kim, H. Lim, 2018, Reinforcement learning based energy management algorithm for smart energy buildings, Energies, Vol. 11, No. 8, pp. 2010DOI
18 
T. Li, Y. Xiao, L. Song, 2019, October, Deep Reinforcement Learning Based Residential Demand Side Management With Edge Computing, In 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) IEEE, pp. 1-6DOI
19 
Q. Yang, G. Wang, A. Sadeghi, G. B. Giannakis, J. Sun, May 2020, Two-Timescale Voltage Control in Distribution Grids Using Deep Reinforcement Learning, in IEEE Transactions on Smart Grid, Vol. 11, No. 3, pp. 2313-2323DOI
20 
Y. Gao, J. Shi, W. Wang, N. Yu, Control, Dynamic Distribution Network Reconfiguration Using Reinforcement Learning, 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, pp. 1-7DOI
21 
S. S. Gu, T. Lillicrap, R. E. Turner, Z. Ghahramani, B. Schölkopf, S. Levine, 2017, Interpolated policy gradient: Merging on-policy and off-policy gradient estimation for deep reinforcement learning, Advances in neural information processing systems, pp. 3846-3855Google Search
22 
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, 2013, Playing atari with deep reinforcement learning, arXiv preprint arXiv: 1312.5602Google Search
23 
T. Markvart, A. McEvoy, L. Castaner, 2003, Practical handbook of photovoltaics: fundamentals and applications, Elsevier, pp. 49-51Google Search
24 
J. Z. Zhu, 2002, Optimal reconfiguration of electrical distribution network using the refined genetic algorithm, Electric Power Systems Research 62.1, pp. 37-42DOI
25 
2017, Iowa State University, A Real 240-Node Distribution System with One-Year Smart Meter Data, http://wzy.ece.iastate.edu/Testsystem.html, pp. 37-42Google Search
26 
S. Kim, December 2019, Increasing Hosting Capacity of Distribution Feeders by Analysis of Generation and Consumption, KEPCO Journal on Electric Power and Energy, Vol. 5, No. 4, pp. 295-309DOI