• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
B. Li, M.-Y. Chow, Y. Tipsuwan, J.C. Hung, 2000, Neural- network-based motor rolling bearing fault diagnosis, IEEE Transactions on Industrial Electronics, Vol. 47, pp. 1060-1069DOI
2 
W. Sun, R. Zhao, R. Q. Yan, Jun 2017, Convolutional discrimi- native feature learning for induction motor fault diagnosis, IEEE Trans. Ind. Informat., Vol. 13, No. 3, pp. 1350-1359DOI
3 
K. Kim, A. G. Parlos, Jun 2002, Induction motor fault diagnosis based on neuropredictors and wavelet signal processing, IEEE/ASME Trans. Mechatronics, Vol. 7, No. 2, pp. 201-219DOI
4 
D. J. Choi, J. H. Han, S. U. Park, S. K. Hong, Oct 2019, Data Preprocessing Method in Motor Fault Diagnosis Using Unsupervised Learning, ICCAS 2019 Conference paper, pp. 1508-1511DOI
5 
J. H. Han, D. J. Choi, S. K. Hong, March 2019, Study on Develop- ment of Deep Learning Fault Diagnosis Algorithm Consi- dering Induction Motor Speed and Load Condition, The Transactions of The Korean Institute of Electrical Engineers, Vol. 68, No. 3Google Search
6 
Q. Guo, Y. Li, Y. Song, D. Wang, W. Chen, 2019, Intelligent Fault Diagnosis Method Based on Full 1D Convolutional Generative Adversarial Network, IEEE Trans. Ind InformDOI
7 
Y. Xie, T. Zhang, 2018, A Transfer Learning Strategy for Rotation Machinery Fault Diagnosis based on Cycle Con- sistent Generative Adversarial Networks, IEEE, pp. 1309-1313DOI
8 
N. Sriraam, C. Eswaran, 2008, Performance evaluation of neural network and linear predictors for near-lossless compression of EEG signals, IEEE Transactions on Information Tech- nology in Biomedicine, pp. 87-93DOI
9 
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, 2016, Improved techniques for training gans, arXiv preprint arXiv:1606.03498Google Search
10 
A. Radford, L. Metz, S. Chintala, 2015, Unsupervised repre- sentation learning with deep convolutional generative adver- sarial networks, arXiv preprint arXiv:1511.06434Google Search
11 
J. Goodfellow Ian, Pouget-Abadie Jean, Mirza Mehdi, Xu Bing, WardeFarley David, Ozair Sherjil, Courville Aaron, Bengio Yoshua, 2014, Generative adversarial nets., In Advances in Neural Information Processing Systems, Curran Associates, Inc, Vol. 27, pp. 2672-2680Google Search
12 
N. Feki, G. Clerc, P. Velex, Feb 2013, Gear and motor fault modeling and detection based on motor current analysis, Elect. Power Syst. Res., Vol. 95, No. , pp. 28-37DOI
13 
J. H. Han, D. J. Choi, S. U. Park, S. K. Hong, 2020, Hyperparameter Optimization Using a Genetic Algorithm Considering Verification Time in a Convolutional Neural Network, Journal of Electrical Engineering & Technology, Vol. 15, pp. 721-726DOI
14 
J. H. Han, D. J. Choi, S. U. Park, S. K. Hong, Oct 2019, A Study on Motor Poor Maintenance Detection Based on DT-CNN, ICCAS 2019 Conference paper, pp. 1234-1237DOI