• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
C. Badue, et. al, 2020, Self-Driving Cars: A Survey, arXiv preprint arXiv:1901.04407DOI
2 
B. Paden, et. at, 2016, A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles, IEEE Transactions on Intelligent Vehicles, Vol. 1, No. 1, pp. 33-55DOI
3 
Y. Xu, V. John, S. Mita, H. Tehrani, K. Ishimaru, S. Nishino, 2017, 3D point cloud map based vehicle localization using stereo camera, 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 487-492DOI
4 
T. Fraichard, 1998, Trajectory planning in a dynamic workspace: a ’state-time space' approach, Advanced Robotics, Vol. 13, pp. 75-94DOI
5 
H. Woo, et al., 2009, Research of the Optimal Local & Global Path Planning for Unmanned Ground Vehicle, The Korean Society Of Automotive Engineers, Vol. 2009, No. 4, pp. 988-992Google Search
6 
P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, D. Hrovat, 2007, Predictive active steering control for autonomous vehicle systems, Transactions on Control Systems Tech- nology, Vol. 15, pp. 566-580DOI
7 
E. Kim, J. Kim, M. Sunwoo, 2014, Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics, International Journal of Automotive Technology, Vol. 15, pp. 1155-1164Google Search
8 
J. Levinson, 2011, Towards fully autonomous driving: Systems and algorithms, 2011 IEEE Intelligent Vehicles Symposium(IV), pp. 163-168DOI
9 
R. S. Sutton, A. G. Barto, 2018, Reinforcement Learning: An Introduction, The MIT PressDOI
10 
J. Kocic, N. Jovicic, V. Drndarevic, 2019, An End-to-End Deep Neural Network for Autonomous Driving Designed for Embedded Automotive Plaforms, Seonsors(Basel), Vol. 19, No. 9, pp. 2064DOI
11 
M. Babiker, M. Elawad, A. Ahmed, Sept 2019, Convolutional Neural Network for a Self-Driving Car in a Virtual Environment, IEEE Int. Conf. on Computer, Control, Electrical, and Electronics EngineeringDOI
12 
A. E. Sallab, M. Abdou, E. Perot, S. Yogamani, 2016, End- to-End Deep Reinforcement Learning for Lane Keeping Assist, arXiv preprint arXiv:1612.04340v1Google Search
13 
P. Wang, C. Y. Chan, 2018, A Reinforcement Learning Based Approach for Automated Lane Change Maneuvers, IEEE Intelligent Vehicles Symposium (IV)DOI
14 
M. P. Ronecker, Y. Zhu, 2019, Deep Q-Network Based Decision Making for Autonomous Driving, International Conference on Robotics and Automation Sciences (ICRAS)DOI
15 
D. Li, D. Zhao, Q. Zhang, Y. Chen, 2019, Reinforcement Learning and Deep Learning Based Lateral Control for Autonomous Driving, IEEE Computational Intelligence Magazine, Vol. 14, No. 2, pp. 83-98Google Search
16 
T. P. Lillicrap, et al., 2015, Continuous control with deep rein- forcement learning, arXiv preprint arXiv:1509.02971Google Search
17 
O. Ronneberger, P. Fischer, T. Brox, 2015, U-Net: Con- volutional Networks for Biomedical Image Segmentation, Int. Conf. on Medical Image Computing and Computer- Assisted Intervention - MICCAI, pp. 234-241DOI
18 
M. Jaritz, et al., 2018, End-to-End Race Driving with Deep Reinforcement Learning, IEEE International Conference on Robotics and Automation (ICRA), Vol. , No. , pp. -DOI
19 
V. R. Konda, J. N. Tsitsiklis, 2003, On Actor-Critic Algorithms, SIAM Journal on Control and Optimization, Vol. 42, No. 4, pp. 1143-1166Google Search