• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Y. LeCun, Y. Bengio, G. Hinton, 2015, Deep learning, Nature, Vol. 521, pp. 436-444DOI
2 
LeCun, Yann, 1998, Gradient based learning applied to document recognition, Proceedings of the IEEE, pp. 2278-2324DOI
3 
K. Simonyan, A. Zisserman, 2014, Very Deep Convolutional Networks for Large-Scale Image Recognition, International Conference on Learning RepresentationsGoogle Search
4 
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, 2015, Going Deeper with Convolutions, Computer Vision and Pattern RecognitionGoogle Search
5 
K. He, X. Zhang, S. Ren, J. Sun, 2016, Deep Residual Learning for Image Recognition, Computer Vision and Pattern RecognitionGoogle Search
6 
S. Han, H. Mao, W. J. Dally, 2015, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, arXiv preprint arXiv: 1510.00149Google Search
7 
H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, 2016, Pruning Filters for Efficient ConvNets, CoRR abs/ 1608.08710Google Search
8 
H. Hu, R. Peng, Y. W. Tai, 2016, Network trimming: A data-driven neuron pruning approach towards efficient deep architectures, arXiv preprint arXiv: 1607.03250Google Search
9 
Q. Huang, K. Zhou, S. You, U. Neumann, 2018 Jan 23, Learning to prune filters in convolutional neural networks, arXiv preprint arXiv: 1801.07365DOI
10 
J. H. Luo, J. Wu, W. Lin, , ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression, ICCV 2017: 5068-5076Google Search
11 
J. Kim, M. Lee, J. Choi, K. Seo, , GA-based Filter Selection for Representation in Convolutional Neural Networks, ECCV 2018 Workshop on Compact and Efficient Feature Representation and Learning in Computer VisionGoogle Search
12 
K. Seo, 2018, Analysis of evolutionary optimization methods for CNN structures, Transactions of the Korean Institute of Electrical Engineers, Vol. 67, No. 6, pp. 767-772DOI