• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
P. Park, J. W. Ko, C. Jeong, 2011, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, Vol. 47, pp. 235-238DOI
2 
A. Seuret, F. Gouaisbaut, 2013, Wirtinger-based integral inequality: Application to time-delayed systems, Automatica, Vol. 49, pp. 2860-2866DOI
3 
O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, E. J. Cha, 2014, Improved results on stability of linear systems with time-varying delays via Wirtinger-based integral inequality, J. of the Franklin Institute, Vol. 351, pp. 5382-5398DOI
4 
H. -B. Zeng, Y. He, M. Wu, J. She, 2015, Free matrix based integral inequality for stability analysis of systems with time-varying delay, IEEE Trans. on Automatic Control, Vol. 60, pp. 2768-2772DOI
5 
A. Seuret, F. Gouaisbaut, 2015, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Systems & Control Letters, Vol. 81, pp. 1-7DOI
6 
J. -H. Kim, 2016, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, Vol. 64, pp. 121-125DOI
7 
A. Seuret, F. Gouaisbaut, 2016, Delay dependent reciprocally convex combination lemma, Rapport LAAS n16006Google Search
8 
C. -K. Zhang, Y. He, L. Jiang, M. Wu, 2017, Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov-Krasovskii functionals, IEEE, Trans. Automatic Control, Vol. 62, pp. 5331-5336DOI
9 
X. -M. Zhang, Q. -L. Han, A. Seuret, F. Gouaisbaut, 2017, An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, Vol. 84, pp. 221-226DOI
10 
A. Seuret, F. Gouaisbaut, 2018, Stability of linear systems with time-varying delays using Bessel-Legendre inequalities, IEEE Trans. Automatic Control, Vol. 63, pp. 225-232DOI
11 
X. -M. Zhang, Q. -L. Han, A. Seuret, F. Gouaisbaut, Y. He, 2019, Overview of recent advances in stability of linear systems with time-varying delays, IET Control Theory and Applications, Vol. 12, pp. 1-16DOI
12 
F. de Oliveira, M. C., F. Souza, 2020, Further refinements in stability conditions for time-varying delay systems, Applied Math. Comput., Vol. 359DOI
13 
B. L. Zhang, L. Cheng, K. Pan, X -M, Zhang, 2020, Reducing conservatism of stability criteria for linear systems with time-varying delay using an improved tripple-integral ine- quality, Applied mathematics and computation, Vol. 380, pp. 125-254DOI
14 
J. M. Park, P. G. Park, 2020, Finite-interval quadratic polynomial inequalities and their application to time-delay systems, J. of Franklin Institute, Vol. 357, pp. 4316-4327DOI
15 
S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishhnan, 1994, Linear Matrix Inequalities in System and Control Theory, Studies in Applied mathematicsGoogle Search
16 
K. Gu, V.L. Kharitonov, J. Chen, 2003, Stability of time-delay systems, BirkhausserGoogle Search
17 
E. Fridman, 2014, Introduction to time-delay systems: Analysis and control, BirkhauserGoogle Search