KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2020-12
(Vol.69 No.12)
10.5370/KIEE.2020.69.12.1904
Journal XML
XML
PDF
INFO
REF
References
1
P. Park, J. W. Ko, C. Jeong, 2011, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, Vol. 47, pp. 235-238
2
A. Seuret, F. Gouaisbaut, 2013, Wirtinger-based integral inequality: Application to time-delayed systems, Automatica, Vol. 49, pp. 2860-2866
3
O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, E. J. Cha, 2014, Improved results on stability of linear systems with time-varying delays via Wirtinger-based integral inequality, J. of the Franklin Institute, Vol. 351, pp. 5382-5398
4
H. -B. Zeng, Y. He, M. Wu, J. She, 2015, Free matrix based integral inequality for stability analysis of systems with time-varying delay, IEEE Trans. on Automatic Control, Vol. 60, pp. 2768-2772
5
A. Seuret, F. Gouaisbaut, 2015, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Systems & Control Letters, Vol. 81, pp. 1-7
6
J. -H. Kim, 2016, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, Vol. 64, pp. 121-125
7
A. Seuret, F. Gouaisbaut, 2016, Delay dependent reciprocally convex combination lemma, Rapport LAAS n16006
8
C. -K. Zhang, Y. He, L. Jiang, M. Wu, 2017, Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov-Krasovskii functionals, IEEE, Trans. Automatic Control, Vol. 62, pp. 5331-5336
9
X. -M. Zhang, Q. -L. Han, A. Seuret, F. Gouaisbaut, 2017, An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, Vol. 84, pp. 221-226
10
A. Seuret, F. Gouaisbaut, 2018, Stability of linear systems with time-varying delays using Bessel-Legendre inequalities, IEEE Trans. Automatic Control, Vol. 63, pp. 225-232
11
X. -M. Zhang, Q. -L. Han, A. Seuret, F. Gouaisbaut, Y. He, 2019, Overview of recent advances in stability of linear systems with time-varying delays, IET Control Theory and Applications, Vol. 12, pp. 1-16
12
F. de Oliveira, M. C., F. Souza, 2020, Further refinements in stability conditions for time-varying delay systems, Applied Math. Comput., Vol. 359
13
B. L. Zhang, L. Cheng, K. Pan, X -M, Zhang, 2020, Reducing conservatism of stability criteria for linear systems with time-varying delay using an improved tripple-integral ine- quality, Applied mathematics and computation, Vol. 380, pp. 125-254
14
J. M. Park, P. G. Park, 2020, Finite-interval quadratic polynomial inequalities and their application to time-delay systems, J. of Franklin Institute, Vol. 357, pp. 4316-4327
15
S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishhnan, 1994, Linear Matrix Inequalities in System and Control Theory, Studies in Applied mathematics
16
K. Gu, V.L. Kharitonov, J. Chen, 2003, Stability of time-delay systems, Birkhausser
17
E. Fridman, 2014, Introduction to time-delay systems: Analysis and control, Birkhauser