• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Ministy of Healthy and Welfare, 2019, 2017 Cancer registration statisticsGoogle Search
2 
F Bray, J Ferlay, I Soerjomataram, RL Siegel, LA Torre, A Jemal, 30 Oct 2019, Global cancer statistics 2018: GLOBOCAN Estimates ofincidence and mortality worldwide for 36 cancers in 185 countries., CA Cancer J Clin 2018. [Online]. https://www.wcrf.org/dietandcancer/cancer-trends/stomach-cancer-statistics.DOI
3 
Healthcare big data hub, 2019, The treatment statistics by Health Insurance Review and Assessment Service diseaseGoogle Search
4 
D.-h. Kim, H.-c. Cho, 2018, Deep Learning based Computer- aided Diagnosis System for Gastric Lesion using Endoscope, The Transactions of The Korean Institute of Electrical Engineers, Vol. 67, pp. 928-933DOI
5 
D. Ergashev, Y. Im Cho, 2019, Skin Lesion Classification towards Melanoma Diagnosis using Convolutional Neural Network and Image Enhancement Methods, Journal of Korean Institute of Intelligent Systems, Vol. 29, pp. 204-209DOI
6 
Y. Zhu, Q.-C. Wang, M.-D. Xu, Z. Zhang, J. Cheng, Y.-S. Zhong, 2019, Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy, Gastrointestinal endoscopy, Vol. 89, pp. 806-815. e1DOI
7 
A. Asperti, C. Mastronardo, 2017, The effectiveness of data augmentation for detection of gastrointestinal diseases from endoscopical images, arXiv preprint arXiv:1712.03689Google Search
8 
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q. V. Le, 2019, Autoaugment: Learning augmentation strategies from data, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 113-123Google Search
9 
S. Lim, I. Kim, T. Kim, C. Kim, S. Kim, 2019, Fast auto- augment, in Advances in Neural Information Processing Systems, pp. 6665-6675Google Search
10 
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., 2014, Generative adversarial nets, in Advances in neural information processing systems, pp. 2672-2680Google Search
11 
S.-a. Lee, D.-h. Kim, H.-c. Cho, 2020, Deep Learning based Gastric Lesion Classification System using Data., The Transactions of The Korean Institute of Electrical Engineers., Vol. 69, pp. 1033-1039Google Search
12 
F. Chollet, 2017, Xception: Deep learning with depthwise separ- able convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251-1258DOI