• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Hu-Man Lee, Jung-Bae Kim, Seong-Hun Kim, 2013, Research Trends and Major Issues of Robot Teaching Technology, Institute of Control, Robotics and Systems, Vol. 19, No. 1, pp. 49-59Google Search
2 
V. Villani, F. Pini, F. Leali, C. Secchi, Nov 2018, Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications, Mechatronics, Vol. 55, pp. 248-266DOI
3 
T. Gašpar, B. Nemec, J. Morimoto, A. Ude, Feb 2018, Skill learning and action recognition by arc-length dynamic move- ment primitives, Robotics and Autonomous Systems, Vol. 100, pp. 225-235DOI
4 
D. Lee, C. Ott, May 2011, Incremental kinesthetic teaching of motion primitives using the motion refinement tube, Auto- nomous Robots, Vol. 31, No. 2-3, pp. 115-131DOI
5 
A. Hussein, F. Garcia, C. Olaverri-Monreal, 2018, ROS and Unity Based Framework for Intelligent Vehicles Control and Simulation, 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)DOI
6 
E. Sita, C. M. Horvath, T. Thomessen, P. Korondi, A. G. Pipe, 2017, ROS-Unity3D based system for monitoring of an industrial robotic process, 2017 IEEE/SICE International Symposium on System Integration (SII)DOI
7 
A. Konrad, 2019, Simulation of Mobile Robots with Unity and ROS: A Case-Study and a Comparison with Gazebo, Master’s thesis, Department of Engineering Science, Univer- sity WestGoogle Search
8 
A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, D. Lange, 2018, Unity: A general platform for intelligent agents, arXiv preprint arXiv: 1809.02627Google Search
9 
A. Billard, S. Calinon, R. Dillmann, S. Schaal, 2008, Robot Programming by Demonstration, Springer Handbook of Robotics, Springer Berlin Heidelberg, pp. 1371-1394Google Search
10 
A. Hussein, M. M. Gaber, E. Elyan, C. Jayne, Jun 2017, Imitation Learning, ACM Computing Surveys, Vol. 50, No. 2, pp. 1-35DOI
11 
B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, F. Sun, Sep 2019, Survey of imitation learning for robotic manipulation, International Journal of Intelligent Robotics and Applications, Vol. 3, No. 4, pp. 362-369DOI
12 
H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, J. Peters, 2014, Interaction primitives for human-robot cooper- ation tasks, 2014 IEEE International Conference on Robotics and Automation (ICRA)DOI
13 
A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Feb 2013, Dynamical Movement Primitives: Learning Attrac- tor Models for Motor Behaviors, Neural Computation, Vol. 25, No. 2, pp. 328-373DOI
14 
B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, 2008, Maximum entropy inverse reinforcement learning, Proc. of AAAI Conference on Artificial Intelligence, Vol. 8, pp. 1433-1438Google Search
15 
M. Zucker, Jan 2011, Optimization and learning for rough terrain legged locomotion, The International Journal of Robotics Research, Vol. 30, No. 2, pp. 175-191DOI
16 
l. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, S., Y. Bengio, 2014, Generative adver- sarial nets, Advances in neural information processing systems, pp. 2672-2680Google Search
17 
J. Ho, S. Ermon, 2016, Generative adversarial imitation learning, Advances in neural information processing systems, pp. 4565-4573Google Search
18 
J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, 2015, Trust region policy optimization, International conference on machine learning, pp. 1889-1897Google Search
19 
J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, 2015, Trust region policy optimization, International conference on machine learning, pp. 1889-1897Google Search
20 
G. Zuo, K. Chen, J. Lu, X. Huang, May 2020, Deterministic generative adversarial imitation learning, Neurocomputing, Vol. 388, pp. 60-69DOI
21 
S. Fujimoto, H. Van Hoof, D. Meger, 2018, Addressing function approximation error in actor-critic methods, arXiv preprint arXiv: 1802.09477Google Search