KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-01
(Vol.70 No.1)
10.5370/KIEE.2021.70.1.145
Journal XML
XML
PDF
INFO
REF
References
1
Hu-Man Lee, Jung-Bae Kim, Seong-Hun Kim, 2013, Research Trends and Major Issues of Robot Teaching Technology, Institute of Control, Robotics and Systems, Vol. 19, No. 1, pp. 49-59
2
V. Villani, F. Pini, F. Leali, C. Secchi, Nov 2018, Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications, Mechatronics, Vol. 55, pp. 248-266
3
T. Gašpar, B. Nemec, J. Morimoto, A. Ude, Feb 2018, Skill learning and action recognition by arc-length dynamic move- ment primitives, Robotics and Autonomous Systems, Vol. 100, pp. 225-235
4
D. Lee, C. Ott, May 2011, Incremental kinesthetic teaching of motion primitives using the motion refinement tube, Auto- nomous Robots, Vol. 31, No. 2-3, pp. 115-131
5
A. Hussein, F. Garcia, C. Olaverri-Monreal, 2018, ROS and Unity Based Framework for Intelligent Vehicles Control and Simulation, 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)
6
E. Sita, C. M. Horvath, T. Thomessen, P. Korondi, A. G. Pipe, 2017, ROS-Unity3D based system for monitoring of an industrial robotic process, 2017 IEEE/SICE International Symposium on System Integration (SII)
7
A. Konrad, 2019, Simulation of Mobile Robots with Unity and ROS: A Case-Study and a Comparison with Gazebo, Master’s thesis, Department of Engineering Science, Univer- sity West
8
A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, D. Lange, 2018, Unity: A general platform for intelligent agents, arXiv preprint arXiv: 1809.02627
9
A. Billard, S. Calinon, R. Dillmann, S. Schaal, 2008, Robot Programming by Demonstration, Springer Handbook of Robotics, Springer Berlin Heidelberg, pp. 1371-1394
10
A. Hussein, M. M. Gaber, E. Elyan, C. Jayne, Jun 2017, Imitation Learning, ACM Computing Surveys, Vol. 50, No. 2, pp. 1-35
11
B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, F. Sun, Sep 2019, Survey of imitation learning for robotic manipulation, International Journal of Intelligent Robotics and Applications, Vol. 3, No. 4, pp. 362-369
12
H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, J. Peters, 2014, Interaction primitives for human-robot cooper- ation tasks, 2014 IEEE International Conference on Robotics and Automation (ICRA)
13
A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Feb 2013, Dynamical Movement Primitives: Learning Attrac- tor Models for Motor Behaviors, Neural Computation, Vol. 25, No. 2, pp. 328-373
14
B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, 2008, Maximum entropy inverse reinforcement learning, Proc. of AAAI Conference on Artificial Intelligence, Vol. 8, pp. 1433-1438
15
M. Zucker, Jan 2011, Optimization and learning for rough terrain legged locomotion, The International Journal of Robotics Research, Vol. 30, No. 2, pp. 175-191
16
l. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, S., Y. Bengio, 2014, Generative adver- sarial nets, Advances in neural information processing systems, pp. 2672-2680
17
J. Ho, S. Ermon, 2016, Generative adversarial imitation learning, Advances in neural information processing systems, pp. 4565-4573
18
J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, 2015, Trust region policy optimization, International conference on machine learning, pp. 1889-1897
19
J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, 2015, Trust region policy optimization, International conference on machine learning, pp. 1889-1897
20
G. Zuo, K. Chen, J. Lu, X. Huang, May 2020, Deterministic generative adversarial imitation learning, Neurocomputing, Vol. 388, pp. 60-69
21
S. Fujimoto, H. Van Hoof, D. Meger, 2018, Addressing function approximation error in actor-critic methods, arXiv preprint arXiv: 1802.09477