• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
H. Chang, J. Choe, S. Yang, S. Myung, H. Jung, G. Lee, W. Hong, J. Kim, Y. Min, 2003, The Prevalence of Color- ectal Neoplasms and the Role of Screening Colonoscopy in Asymptomatic Korean Adults, Intestinal research (Intest Res), Vol. 1, No. 2, pp. 179-185Google Search
2 
Korea National Statistical Office, http://kostat.go.kr/Google Search
3 
K. Huh, 2010, Strategy for early detection of colon cancer, The Korean Journal of Medicine, Vol. 79, No. 2, pp. 104-112Google Search
4 
D. C. Lindsay, J. G. Freeman, I. Cobden, C. O. Record, 1988, Should colonoscopy be the first investigation for colonic disease?, Br Med J (Clin Res Ed), Vol. 296, No. 6616, pp. 167-169DOI
5 
S. J. Winawer, A. G. Zauber, M. N. Ho, M. J. O'Brien, L. S. Gottlieb, S. S. Sternberg, J. D. Waye, M. Schapiro, J. H. Bond, J. F. Panish, F. Ackroyd, M. Shike, R. C. Kurtz, H. Lynn, H. Gerdes, E. T. Stewart, 1993, Prevention of colorectal cancer by colonoscopic polypectomy, New England Journal of Medicine, Vol. 329, No. 27, pp. 1977-1981DOI
6 
A. M. Leufkens, M. G. H. van Oijen, F. P. Vleggaar, P. D. Siersema, 2012, Factors influencing the miss rate of polyps in a back-to-back colonoscopy study, Endoscopy, Vol. 44, No. 05, pp. 470-475DOI
7 
L. Rabeneck, J. Souchek, H. B. El-Serag, 2003, Survival of colorectal cancer patients hospitalized in the Veterans Affairs Health Care System, The American journal of gastro- enterology, Vol. 98, No. 5, pp. 1186-1192DOI
8 
S. A. Karkanis, D. K. Iakovidis, D. E. Maroulis, D. A. Karras, M. Tzivras, 2003, Computer-aided tumor detection in endoscopic video using color wavelet features, IEEE transactions on information technology in biomedicine, Vol. 7, No. 3, pp. 141-152DOI
9 
S. Hwang, J. Oh, W. Tavanapong, J. Wong, P. C. De Groen, 2007, Polyp detection in colonoscopy video using ellipti- cal shape feature, IEEE International Conference on Image Processing, Vol. 2, pp. 465-468DOI
10 
J. Bernal, J. Sánchez, F. Vilarino, 2012, Towards automatic polyp detection with a polyp appearance model, Pattern Recognition, Vol. 45, No. 9, pp. 3166-3182DOI
11 
N. Tajbakhsh, S. R. Gurudu, J. Liang, 2015, Automated polyp detection in colonoscopy videos using shape and context information, IEEE transactions on medical imaging, Vol. 35, No. 2, pp. 630-644DOI
12 
E. Ribeiro, A. Uhl, G. Wimmer, M. Häfner, 2016, Exploring deep learning and transfer learning for colonic polyp classification, Computational and mathematical methods in medicineDOI
13 
X. Zhang, F. Chen, T. Yu, J. An, Z. Huang, J. Liu, W. Hu, L. Wang, H. Duan, J. Si, 2019, Real-time gastric polyp detection using convolutional neural networks, PloS one, Vol. 14, No. 3DOI
14 
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, 2019, Autoaugment: Learning augmentation strategies from data, Proceedings of the IEEE conference on computer vision and pattern recognitionGoogle Search
15 
A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, 2020, YOLOv4: Optimal Speed and Accuracy of Object Detec- tion, arXiv preprint arXiv: 2004.10934Google Search
16 
Z. Jiang, L. Zhao, S. Li, Y. Jia, 2020, Real-time object detection method based on improved YOLOv4-tiny, arXiv preprint arXv: 2011.04244Google Search
17 
Grand Challenge, https://grand-challenge.org/Google Search