• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. W. Lee, Jan 2013, A stock trading system based on supervised learning of highly volatile stock price patterns, The Journal of KIISE: Computing Practices and Letters, Vol. 19, No. 1, pp. 23-29Google Search
2 
A. S. Saud, S. Shakya, Apr 2020, Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE, Procedia Computer Science, Vol. 167, pp. 788-798DOI
3 
S. Mehtab, J. Sen, Nov 2020, Stock Price Prediction Using CNN and LSTM-Based Deep Learning Models, IEEE International Conf. on DASAGoogle Search
4 
C. Yang, J. Zhai, G. Tao, 2020, Deep Learning for Price Move- ment Prediction Using Convolutional Neural Network and Long Shot-Term Memory, Mathematical Problems in Engineering, Vol. 2020, No. Article ID 2746845DOI
5 
B. G. Malkiel, 1996, A Random Walk Down Wall Street, W. W. Norton & Company, New YorkGoogle Search
6 
C. Hsu, Oct 2011, A hybrid procedure for stock price prediction by integrating self-organizing map and genetic programming, Expert Systems with Applications, Vol. 38, No. 11, pp. 14026-14036DOI
7 
T. Fischer, C. Krauss, Oct 2018, Deep learning with long short- term memory networks for financial market prediction, The European Journal of Operational Research, Vol. 270, No. 2, pp. 654-669DOI
8 
H. J. Song, S. J. Lee, May 2018, A study on the optimal trading frequency pattern and forecasting timing in real time stock trading using deep learning: focused on KOSDAQ, The Journal of KAIS, Vol. 27, No. 3, pp. 123-140DOI
9 
J. W. Lee, Oct 2018, Short-term stock price prediction by supervised learning of rapid volume decreasing patterns, KIISE Trans. Computing Practices, Vol. 24, No. 10, pp. 544-553Google Search
10 
J. M. Won, H. S. Hwang, Y. H. Jung, H. D. Park, Nov 2018, Stock Price Prediction Technique Using Technical Analy- sis Index and Deep Running, KIIT Conf., pp. 404-405Google Search
11 
J. W. Lee, J. O, Aug 2002, A Multi-agent Q-learning Framework for Optimizing Stock Trading Systems, Lecture Notes in Computer Science, Vol. 2453DOI
12 
E. G. Ha, C. B. Kim, Apr 2019, Model Implementation of Reinforcement Learning for Trading Prediction Using Deep Q Network, The Journal of KIIT, Vol. 17, No. 4, pp. 1-8Google Search
13 
V. Mnih, 2013, Playing Atari with deep reinforcement learning, NIPS Deep Learning WorkshopGoogle Search
14 
H. Park, Nov 2020, An intelligent financial portfolio trading strategy using deep Q-learning, Expert Syst. Appl., Vol. 158DOI
15 
H. Yang, X.-Y. Liu, S. Zhong, A. Walid, Sept 2020, Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy, Neural Information Processing Systems Conf.DOI
16 
V. Mnih, Feb 2015, Human-level control through deep rein- forcement learning, Nature, Vol. 518, No. 7540, pp. 529-533DOI
17 
H. van Hasselt, A. Guez, D. Siver, Feb 2016, Deep Rein- forcement Learning with Double Q-learning, AAAI Conf. Artificial Intelligence, pp. 2094-2100Google Search
18 
C. J. Neely, D. E. Rapach, J. Tu, G. Zhou., 2014, Forecasting the Equity Risk Premium: The Role of Technical Indicator, Management Science., Vol. 60, pp. 1772-1791DOI
19 
D. Avramov, G. Kaplanski, A. Subrahmanyam., Jan 2019, Moving Average Distance as a Predictor of Equity Returns, SSRN Electronic JournalDOI
20 
J. H. Kim, S. H. Shin, Sep 1996, Dynamic Asset Allocation by Moving Average Rules and Network Models, Korean Journal of Financial Studies, Vol. 19, pp. 111-143Google Search
21 
Y. Han, K. Yang, G. Zhou, Dec 2013, A New Anomaly: The Cross-Sectional Profitability of Technical Analysis, Journal of Financial and Quantitative Analysis, Vol. 48, No. 5, pp. 1443-1461Google Search