• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
H. Li, P. Wang, C. Shen, March 2019, Toward End-to-End Car License Plate Detection and Recognition With Deep Neural Networks, in IEEE Transactions on Intelligent Transpor- tation Systems, Vol. 20, No. 3, pp. 1126-1136DOI
2 
S. Ren, K. He, R. Girshick, J. Sun, 1 June 2017, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,, in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 3, pp. 1137-1149DOI
3 
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, 2016, You Only Look Once: Unified, Real-Time Object Detection, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,, pp. 779-788Google Search
4 
B. Shi, X. Bai, C. Yao, 1 Nov 2017, An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition, in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 11, pp. 2298-2304DOI
5 
L. A. Elrefaei, A. Bajaber, S. Natheir, N. AbuSanab, M. Bazi, 2015, Automatic electricity meter reading based on image processing, 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, pp. 1-5DOI
6 
A. Anis, M. Khaliluzzaman, M. Yakub, N. Chakraborty, K. Deb, 2017, Digital electric meter reading recognition based on horizontal and vertical binary pattern, 2017 3rd International Conference on Electrical Information and Communication Technology (EICT), Khulna, pp. 1-6DOI
7 
H. Shuo, Y. Ximing, L. Donghang, L. Shaoli, P. Yu, 2019, Digital recognition of electric meter with deep learning, 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, China, pp. 600-607DOI
8 
W Liu., D Anguelov., D Erhan., 2016, SSD: Single Shot MultiBox Detector, European Conference on Computer Vision, pp. 21-37DOI
9 
C Cortes., V Vapnik., 1995, Support-vector networks, Machine learning, Vol. 20, No. 3, pp. 273-297DOI
10 
M. Everingham, L. Van Gool, C. K. I. Williams, 2010, The pascal visual object classes(VOC) challenge, Inter- national Journal of Computer Vision 88, pp. 303-338DOI
11 
A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, J. Schmidhuber, May 2009, A Novel Connectionist System for Unconstrained Handwriting Recognition, in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 5, pp. 855-868DOI
12 
M Abadi., P Barham., J Chen., 2016, Tensorflow: a system for large-scale machine learning, Operating Systems Design and Implementation (OSDI), Vol. 16, No. , pp. 265-283Google Search
13 
A. Graves, S. Fernandez, F. Gomez, 2006, Connectionist temporal classification: Labellingunsegmented sequence data with recurrent neural networks, in International Conference on Machine Learning (ICML), pp. 369-376DOI