• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Richard S. Sutton, Andrew G. Barto, 2018, Reinforcement learning: An introduction, MIT pressGoogle Search
2 
Volodymyr Mnih, 2015, Human-level control through deep reinforcement learning, Nature, Vol. 518.7540, pp. 529-533DOI
3 
Lasse Espeholt, 2018, IMPALA: Scalable distributed deep-RL with importance weighted actor-learner architectures, International Conference on Machine LearningGoogle Search
4 
Marcin Andrychowicz, 2017, Hindsight experience replay, Advances in Neural Information Processing SystemsGoogle Search
5 
Łukasz Kaiser, 2019, Model based reinforcement learning for atari, International Conference on Learning Represen- tationsGoogle Search
6 
Yuri Burda, 2018, Exploration by random network distil- lation, International Conference on Learning Represen- tationsGoogle Search
7 
John Schulman, al et, 2017, Proximal policy optimization algori- thms, arXiv preprintGoogle Search
8 
John Schulman, al et, 2015, Trust region policy optimization, International Conference on Machine LearningGoogle Search
9 
Volodymyr Mnih, 2016, Asynchronous methods for deep reinforcement learning, International Conference on Machine LearningGoogle Search
10 
Erik D. Demaine, Hohenberger Susan, Liben- Nowell David, 2003, Tetris is hard, even to approximate, International Computing and Combinatorics Conference, Vol. springer, No. berlin, heidelbergGoogle Search
11 
Simón Algorta, Şimşek Özgür, 2017, The game of tetris in machine learning, International Conference on Machine LearningGoogle Search
12 
Oriol Vinyals, 2019, Grandmaster level in StarCraft II using multi-agent reinforcement learning, Nature, Vol. 575.7782, pp. 350-354DOI
13 
Richard S. Sutton, 2000, Policy gradient methods for reinforcement learning with function approximation, Advances in Neural Information Processing SystemsGoogle Search
14 
Dongki Han, Myeongseop Kim, Jaeyoun Kim, 2019, Deep Q-network based game agents, Journal of Korea Robotics Society, Vol. 14, No. 3, pp. 157-162DOI
15 
Myeongseop Kim, Jung-Su Kim, 2020, Reinforcement learning game agent for sparse reward environment, The 51th KIEE Summer ConferenceGoogle Search
16 
Tuomas Haarnoja, 2018, Soft actor-critic: Off-policy maxi- mum entropy deep reinforcement learning with a stochastic actor., International Conference on Machine Learning. PMLRGoogle Search