KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-04
(Vol.70 No.4)
10.5370/KIEE.2021.70.4.679
Journal XML
XML
PDF
INFO
REF
References
1
P. Perera, R. Nallapati, B. Xiang, , Ocgan: One-class novelty detection using gans with constrained latent representations, Proceedings of the IEEE Conference on Com- puter Vision and Pattern Recognition. 2019.
2
S. Akcay, A. Atapour-Abarghouei, T. P. Breckon, 2018, Ganomaly: Semi-supervised anomaly detection via adversarial training, Asian conference on computer vision. Springer, Cham
3
S. Akçay, A. Atapour-Abarghouei, T. P. Breckon, 2019, Skip-ganomaly: Skip connected and adversarially trained encoder-decoder anomaly detection, 2019 International Joint Conference on Neural Networks (IJCNN). IEEE
4
T. Schlegl, P. Seebock, S. M. Waldstein, U. Schmidt-Erfurth, G. Langs, 2017, Unsupervised anomaly detection with generative adversarial networks to guide marker discovery, International conference on information processing in medical imaging. Springer, Cham
5
Y. Yamanaka, T. Iwata, H. Takahashi, M. Yamada, S. Kanai, 2019, Autoencoding binary classifiers for supervised anomaly detection, Pacific Rim International Conference on Artificial Intelligence. Springer, Cham, Vol. , No. , pp. -
6
A. Munawar, P. Vinayavekhin, G. D. Magistris, 2017, Limiting the reconstruction capability of generative neural network using negative learning, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE
7
G. E. Hinton, R. R. Salakhutdinov, 2006, Reducing the dimensionality of data with neural networks, science 313.5786, pp. 504-507
8
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, 2014, Generative adversarial nets, Advances in neural information processing systems.
9
J. Kim, K. Jeong, H. Choi, K. Seo, GAN-based Anomaly Detection in Imbalance Problems, ECCV 2020 Workshop on Imbalance Problems in Computer Vision (IPCV).
10
H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms, arXiv 2017, arXiv preprint arXiv:1708.07747
11
O. Ronneberger, P. Fischer, T. Brox, 2015, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention. Springer
12
P. Isola, J. Zhu, T. Zhou, A. A. Efros, 2017, Image-to-image translation with conditional adversarial networks, Proceedings of the IEEE conference on computer vision and pattern recognition
13
C. X. Ling, J. Huang, H. Zhang, 2003, AUC: a statistically consistent and more discriminating measure than accuracy, Ijcai., Vol. 3