• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
P. Perera, R. Nallapati, B. Xiang, , Ocgan: One-class novelty detection using gans with constrained latent representations, Proceedings of the IEEE Conference on Com- puter Vision and Pattern Recognition. 2019.Google Search
2 
S. Akcay, A. Atapour-Abarghouei, T. P. Breckon, 2018, Ganomaly: Semi-supervised anomaly detection via adversarial training, Asian conference on computer vision. Springer, ChamDOI
3 
S. Akçay, A. Atapour-Abarghouei, T. P. Breckon, 2019, Skip-ganomaly: Skip connected and adversarially trained encoder-decoder anomaly detection, 2019 International Joint Conference on Neural Networks (IJCNN). IEEEDOI
4 
T. Schlegl, P. Seebock, S. M. Waldstein, U. Schmidt-Erfurth, G. Langs, 2017, Unsupervised anomaly detection with generative adversarial networks to guide marker discovery, International conference on information processing in medical imaging. Springer, ChamDOI
5 
Y. Yamanaka, T. Iwata, H. Takahashi, M. Yamada, S. Kanai, 2019, Autoencoding binary classifiers for supervised anomaly detection, Pacific Rim International Conference on Artificial Intelligence. Springer, Cham, Vol. , No. , pp. -DOI
6 
A. Munawar, P. Vinayavekhin, G. D. Magistris, 2017, Limiting the reconstruction capability of generative neural network using negative learning, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP). IEEEDOI
7 
G. E. Hinton, R. R. Salakhutdinov, 2006, Reducing the dimensionality of data with neural networks, science 313.5786, pp. 504-507DOI
8 
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, 2014, Generative adversarial nets, Advances in neural information processing systems.Google Search
9 
J. Kim, K. Jeong, H. Choi, K. Seo, GAN-based Anomaly Detection in Imbalance Problems, ECCV 2020 Workshop on Imbalance Problems in Computer Vision (IPCV).DOI
10 
H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms, arXiv 2017, arXiv preprint arXiv:1708.07747Google Search
11 
O. Ronneberger, P. Fischer, T. Brox, 2015, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention. SpringerDOI
12 
P. Isola, J. Zhu, T. Zhou, A. A. Efros, 2017, Image-to-image translation with conditional adversarial networks, Proceedings of the IEEE conference on computer vision and pattern recognitionGoogle Search
13 
C. X. Ling, J. Huang, H. Zhang, 2003, AUC: a statistically consistent and more discriminating measure than accuracy, Ijcai., Vol. 3Google Search