KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-09
(Vol.70 No.9)
10.5370/KIEE.2021.70.9.1331
Journal XML
XML
PDF
INFO
REF
References
1
M. Bhargava, C.-C. Chen, M. S. Ryoo, 2007, Detection of abandoned objects in crowded environments, in Proceedings of AVSS, pp. 271-276
2
H.-H. Liao, J.-Y. Chang, 2008, A Localized Approach to Abandoned Luggage Detection with Foreground- Mask Sampling, in Proceedings of AVSS, pp. 132-139
3
F. Porikli, Y. Ivanov, 2008, Robust abandoned object detection using dual foregrounds, EURASIP Journal on Advances in Signal Processing, Vol. 2008, pp. 30
4
S. Kwak, G. Bae, 2010, Abandoned luggage detection using a finite state automaton in surveillance video, Optical Engineering, Vol. 49, No. 2, pp. 027 007–1-027 007–10
5
G. Szwoch, P. Dalka, 2010, A Framework for Automatic Detection of Abandoned Luggage in Airport Terminal., Springer, pp. 13-22
6
Y. Tian, R. S. Feris, H. Liu, A. Hampapur, 2011, Robust Detection of Abandoned and Removed Objects in Complex Surveillance Videos, IEEE Transactions on Systems Man and Cybernetics, Vol. 41, No. 5, pp. 565-576
7
G. Szwoch, 2016, Extraction of stable foreground image regions for unattended luggage detection, Multimedia Tools and Applications, Vol. 75, No. 2, pp. 761-786
8
J. Wen, H. Gong, X. Zhang, W. Hu, 2009, Generative model for abandoned object detection, in Proceedings of ICIP, pp. 853-856
9
S. Smeureanuz, R. T. Ionescu, 2018, Real-Time Deep Learning Method for Abandoned Luggage Detection in Video, in Proceedings of European Signal Processing Conference 2018 In 2018 26th European Signal Processing Conference (EUSIPCO), pp. 1775-1779
10
S. Akcay, A. Atapour-Abarghouei, T. P. Breckon, 2018 December, Ganomaly: Semi-supervised anomaly detection via adversarial training., In Asian conference on computer vision, pp. 622-637
11
M. abokrou, M. Khalooei, M. Fathy, E. Adeli, 2018, Adversarially learned one-class classifier for novelty detection., In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3379-3388
12
T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, G. Langs, 2017 June, Unsupervised anomaly detection with generative adversarial networks to guide marker discovery., In International conference on information processing in medical imaging, pp. 146-157
13
A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, 2020, YOLOv4: Optimal Speed and Accuracy of Object Detection., arXiv preprint arXiv:2004.10934.
14
Abnormal Event CCTV Video AI Training Dataset, https://www.aihub.or.kr/aidata/139
15
O. Ronneberger, P. Fischer, T. Brox, 2015 October, U-net: Convolutional networks for biomedical image segmentation., In International Conference on Medical image computing and computer-assisted intervention, pp. 234-241
16
Y. Yamanaka, T. Iwata, H. Takahashi, M. Yamada, S. Kanai, 2019 August, Autoencoding binary classifiers for supervised anomaly detection., In Pacific Rim International Conference on Artificial Intelligence, pp. 647-659
17
J. Kim, K. Jeong, H. Choi, K. Seo, January 2020, GAN-based Anomaly Detection in Imbalance Problems, ECCV-2020 Workshops Lecture Notes in Computer Science Springer-Verlag