• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Korean Statistical Information Service, Number of farms and number of cattle by city and breeding scaleGoogle Search
2 
National Institute of Animal Science, Enhancement of economic feasibility through proper management of breeding cattle using standard Korean cattlGoogle Search
3 
Rural Development Administration, A tape measure that calculates the weight of Korean cattle without a scaleGoogle Search
4 
Rural Development Administration, Korean cattle standard weight calculatorGoogle Search
5 
K. Wang, H. Guo, Q. Ma, W. Su, L. Chen, D. Zhu, 2018, A portable and automatic Xtion-based measurement system for pig body size, Computers and Electronics in Agriculture, Vol. 148, pp. 291-298DOI
6 
K. W. Seo, D. W. Lee, E. G. Choi, C. H. Kim, H. T. Kim, 2012, Algorithm for Measurement of the Dairy Cow's Body Parameters by Using Image Processing, Journal of Biosystems Engineering, Vol. 37, No. 2, pp. 122-129DOI
7 
Wongsriworaphon, Apirachai, Arnonkijpanich Banchar, Pathumnakul Supachai, 2015, An approach based on digital image analysis to estimate the live weights of pigs in farm environments, Computers and Electronics in Agriculture, Vol. 115, pp. 26-33DOI
8 
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998, Gradientbased learning applied to document recognition, Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324DOI
9 
B. Jiang, Q. Wu, X. Yin, D. Wu, H. Song, D. He, 2019, FLYOLOv3 deep learning for key parts of dairy cow body detection, Computers and Electronics in Agriculture 166 104982Google Search
10 
D. Wu, Q. Wu, X. Yin, B. Jiang, H. Wang, D. He, H. Song, 2020, Lameness detection of dairy cows based on the YOLOv3 deep learning algorithm and a relative step size characteristic vector, Biosystems Engineering, Vol. 189, pp. 150-163DOI
11 
Banos, Georgios, P. M. Coffey, 2012, Prediction of liveweight from linear conformation traits in dairy cattle, Journal of dairy science, Vol. 95, No. 4, pp. 2170-2175DOI
12 
E. P. C. Koenen, A. F. Groen, 1998, Genetic evaluation of body weight of lactating Holstein heifers using body measurements and conformation traits, Journal of dairy science, Vol. 81, No. 6, pp. 1709-1713DOI
13 
W. Barlieb, C. M. Baumrucker, C. R., 2010, Genetic parameters of feed intake, production, body weight, body condition score, and selected type traits of Holstein cows in commercial tie-stall barns, Journal of Dairy Science, Vol. 93, No. 10, pp. 4892-4901DOI
14 
K. He, G. Gkioxari, P. Dollár, R. Girshick, 2017, Mask r-cnn, Proceedings of the IEEE international conference on computer vision, pp. 2961-2969Google Search
15 
S. Ren, K. He, R. Girshick, J. Sun, 2016, Faster R-CNN: towards real-time object detection with region proposal networks, IEEE transactions on pattern analysis and machine intelligence, Vol. 39, No. 6, pp. 1137-1149DOI
16 
Jonathan Long, Shelhamer Evan, Darrell Trevor, 2015, Fully convolutional networks for semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440Google Search
17 
Rother, Carsten, Kolmogorov Vladimir, Blake Andrew, 2004, GrabCut interactive foreground extraction using iterated graph cuts, ACM transactions on graphics (TOG), Vol. 23, No. 3, pp. 309-314DOI
18 
Greig, M. Dorothy, T. Porteous Bruce, H. Seheult Allan, 1989, Exact maximum a posteriori estimation for binary images, Journal of the Royal Statistical Society: Series B (Methodological), Vol. 51, No. 2, pp. 271-279DOI
19 
A. H. Zhain, M. D. Guitara, B. U. Hidayahtuloh, R. A. Wibowo, H. F. Muttaqin, 2021, Digital Image Processing to Determine Weight and Classification of Cow Weight with Deep Learning, Psychology and Education Journal, Vol. 58, No. 1, pp. 6066-6082DOI