• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
A Smola, S. V. N Vishwanathan, 2008, Introduction to machine learning, Cambridge University UK, Vol. 32, No. 34Google Search
2 
T. Meng, X. Jing, Z. Yan, W. Pedrycz, 2020, A survey on machine learning for data fusion, Information Fusion, Vol. 57DOI
3 
M. J. Wilemink, W. A. Koszek, C. Hardell, J. Wu, D. Fleischmann, H. Harvey, M. P. Lungren, 2020, Preparing medical imaging data for machine learning, Radiology, Vol. 295, No. 1DOI
4 
D. Xin, L. Ma, S. Macke, A. Parameswaran, 2019, Helix: accelerating human-in-the-loop machine learning, Proceeding of the VLDB Endowment, Vol. 11, No. 12Google Search
5 
N. Polyzotis, S. Roy, S. E. Whang, M. Zinkevich, 2017, Data management challenges in production machine learning, In Proceedings of the 2017 ACM International Conference on Management of DataDOI
6 
Y. Roh, G. Heo, S. E. Whang, 2019, A survey on data collection for machine learning: a big data-ai integration perspective, IEEE Transaction on Knowledge and Data Engineering.DOI
7 
A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, Wu, 2017, Snorked: Rapid training data creation with weak supervision, In Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, Vol. 11, No. 3Google Search
8 
Chris Warren, 2019, Can Artificial Intelligence Transform the Power System?, KEPCO Journal on Electric Power and Energy, Vol. 5, No. 2DOI
9 
M.M. Hosseinin, 2021, Artificial intelligence for resilience enhancement of power distribution systems, The Electricity Journal, Vol. 34, No. 1DOI
10 
T. Ahmad, D Zhang, C. Huang, H. Zhang, N. Dai, Y. Song, H. Chen, 2021, Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities, Journal of Cleaner Production, Vol. 125834DOI
11 
Haesung Lee, Byungsung Lee, Sangun Moon, Junhyuk Kim, Heysun Lee, 2020, Management automation technique for maintaining performance of machine learning-based power grid condition prediction model, KEPCO Journal on Electric Power and Energy, Vol. 6, No. 4DOI
12 
Haesung Lee, Byungsung Lee, Sangun Moon, Junhyuk Kim, Heysun Lee, 2020, Development of comparative verification system for reliability evaluation of distribution line load prediction model, KEPCO Journal on Electric Power and Energy, Vol. 6, No. 4DOI
13 
Mu. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, B. Y Su, 2014, Scaling distributed machine learning with the parameter server, In proceedings of the 11th USENIX Symposium on Operating System Design and Implementation(OSDI)Google Search
14 
S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishan, V. Raghavendra, 2018, Deep leaning for entity matching: ad design space exploration, In proceeding of ACM International Conference on Management of DataDOI
15 
E. Dvval, W. Hodgins, S. Sutton, S.L Weibed, 2002, Metadata principles and practicalities, D-lib Magazine, Vol. 8, No. 4Google Search