KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-09
(Vol.70 No.9)
10.5370/KIEE.2021.70.9.1345
Journal XML
XML
PDF
INFO
REF
References
1
A Smola, S. V. N Vishwanathan, 2008, Introduction to machine learning, Cambridge University UK, Vol. 32, No. 34
2
T. Meng, X. Jing, Z. Yan, W. Pedrycz, 2020, A survey on machine learning for data fusion, Information Fusion, Vol. 57
3
M. J. Wilemink, W. A. Koszek, C. Hardell, J. Wu, D. Fleischmann, H. Harvey, M. P. Lungren, 2020, Preparing medical imaging data for machine learning, Radiology, Vol. 295, No. 1
4
D. Xin, L. Ma, S. Macke, A. Parameswaran, 2019, Helix: accelerating human-in-the-loop machine learning, Proceeding of the VLDB Endowment, Vol. 11, No. 12
5
N. Polyzotis, S. Roy, S. E. Whang, M. Zinkevich, 2017, Data management challenges in production machine learning, In Proceedings of the 2017 ACM International Conference on Management of Data
6
Y. Roh, G. Heo, S. E. Whang, 2019, A survey on data collection for machine learning: a big data-ai integration perspective, IEEE Transaction on Knowledge and Data Engineering.
7
A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, Wu, 2017, Snorked: Rapid training data creation with weak supervision, In Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, Vol. 11, No. 3
8
Chris Warren, 2019, Can Artificial Intelligence Transform the Power System?, KEPCO Journal on Electric Power and Energy, Vol. 5, No. 2
9
M.M. Hosseinin, 2021, Artificial intelligence for resilience enhancement of power distribution systems, The Electricity Journal, Vol. 34, No. 1
10
T. Ahmad, D Zhang, C. Huang, H. Zhang, N. Dai, Y. Song, H. Chen, 2021, Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities, Journal of Cleaner Production, Vol. 125834
11
Haesung Lee, Byungsung Lee, Sangun Moon, Junhyuk Kim, Heysun Lee, 2020, Management automation technique for maintaining performance of machine learning-based power grid condition prediction model, KEPCO Journal on Electric Power and Energy, Vol. 6, No. 4
12
Haesung Lee, Byungsung Lee, Sangun Moon, Junhyuk Kim, Heysun Lee, 2020, Development of comparative verification system for reliability evaluation of distribution line load prediction model, KEPCO Journal on Electric Power and Energy, Vol. 6, No. 4
13
Mu. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, B. Y Su, 2014, Scaling distributed machine learning with the parameter server, In proceedings of the 11th USENIX Symposium on Operating System Design and Implementation(OSDI)
14
S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishan, V. Raghavendra, 2018, Deep leaning for entity matching: ad design space exploration, In proceeding of ACM International Conference on Management of Data
15
E. Dvval, W. Hodgins, S. Sutton, S.L Weibed, 2002, Metadata principles and practicalities, D-lib Magazine, Vol. 8, No. 4