• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
P. Goel, S. Agarwal, 2012, Hybrid Approach of Haar Cascade Classifiers and Geometrical Properties of Facial Features Applied to Illumination Invariant Gender Classification System, 2012 International Conference on Computing Sciences, pp. 132-136DOI
2 
G. B. Li, H. F. Wu, 2011, Weighted fragments-based mean shift tracking using color-texture histogram, Journal for ComputerAided Design and Computer Graphics, Vol. 12, No. 12, pp. 2059-2066Google Search
3 
D. Exner, E. Bruns, D. Kurz, A. Grundhofer, O. Bimber, 2010, Fast and robust CAMShift tracking, In Proceeding of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 9-16DOI
4 
G. Bishop, G. Welch, 2010, An introduction to the Kalman filter, Proc of SIGGRAPH, Course, Vol. 8, No. 41, pp. 27599-23175Google Search
5 
K. Nummiaro, E. Koller-Meier, G. L. Van, 2003, An adaptive color-based particle filter, Image and Vision computing, Vol. 21, No. 1, pp. 99-110DOI
6 
J. Fan, W. Xu, Y. Wu, Y. Gong, 2010, Human Tracking Using convolutional neural networkss, in IEEE Transactions on Neural Networks, Vol. 21, No. 10, pp. 1610-1623DOI
7 
J. Zhu, Y. Lao, Y. F. Zheng, 2010, Object Tracking in Structured Environments for Video Surveillance Applications, in IEEE Transactions on Circuits and Systems for Video Technology, Vol. 20, No. 2, pp. 223-235DOI
8 
D. Koller, J. Weber, J. Malik, 1994, Robust multiple car tracking with occlusion reasoning, Proc. Third European Conference on Computer Vision, pp. 189-196DOI
9 
L. Vasu, D. M. Chandler, 2010, Vehicle tracking using a human-vision-based model of visual similarity, 2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI), Vol. , No. , pp. 37-40DOI
10 
P. N. Druzhkov, V. D. Kustikova, 2016, A survey of deep learning methods and software tools for image classification and object detection, Pattern Recognition. Image Anal., Vol. 26, No. 1, pp. 9-15DOI
11 
A. Krizhevsky, I. Sutskever, G. E. Hinton, 2012, Image net classification with deep convolutional neural networkss, Advances in neural information processing systems, Vol. 25, pp. 1097-1105DOI
12 
R. Girshick, J. Donahue, T. Darrell, J. Malik, 2014, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580-587Google Search
13 
R. Girshick, 2015, Fast r-cnn, Proceeding of the IEEE international conference on computer vision., pp. 1440-1448Google Search
14 
S. Ren, K. He, R. Girshick, J. Sun, 2017, Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 39, No. 6, pp. 1137-1149DOI
15 
J. Dai, Y. Li, K. He, J. Sun, 2016, R-FCN: Object detection via region-based fully convolutional networks, in Proc. NIPS, pp. 379-387Google Search
16 
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, 2016, You only look once: Unifified, real-time object detection, in Proc. IEEE Conf. Computation. Vis. Pattern Recognition. (CVPR), pp. 779-788Google Search
17 
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg, 2016, SSD: Single shot Multi-Box detector, in Proc. ECCV, pp. 21-37Google Search
18 
K. He, X. Ren, S., 2016, Deep residual learning for image recognition, IEEE Conf. On Computer Vision and Pattern Recognition, pp. 770-778Google Search
19 
L. Chen, Z. Zhang, L. Peng, 2018, Fast single shot multibox detector and its application on vehicle counting system, IET Intelligent Transport Systems, Vol. 12, No. 10, pp. 1406-1413Google Search
20 
L. Gao, P. Chen, S. Yu, 2016, Demonstration of convolution kernel operation on resistive cross-point array, in IEEE Electron Device Letters, Vol. 37, No. 7, pp. 870-873DOI
21 
S. Ozturk, U. Ozkaya, B. Akdemir, L. Seyfi, 2018, Convolution kernel size effect on convolutional neural networks in histopathological image processing Applications, 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE), pp. 1-5DOI
22 
P. Sermanet, D. Eigen, X. Zhang, M. Michael, R. Fergus, Y. LeCun, 2017, OverFeat: Integrated recognition, localization and detection using convolutional networks, in IEEE Electron Device Letters, pp. 256-260Google Search
23 
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, 2015, Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 37, No. 9, pp. 1904-1916DOI
24 
W. Pei, Y. M. Xu, Y. Y. Zhu, P. Q. Wang, M. Y. Lu, F. Li, 2019, The target detection method of aerial photography images with improved SSD, Ruan Jian Xue Bao/Journal of Software, Vol. 30, No. 3, pp. 738-758Google Search
25 
J. W. Chu, L. S. Ji, L. Guo, B. B. Li, R. B. Wang, 2004, Study on method of detecting preceding vehicle based on monocular camera, IEEE Intelligent Vehicles Symposium, pp. 750-755DOI
26 
J. Park, Y. Cho, B. Yoo, J. Kim, 2015, Autonomous collision avoidance for unmanned surface ships using on board monocular vision, OCEANS 2015 MTS/IEEE Washington, pp. 1-6DOI