• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
K. Cleary, T. M. Peters, 2010, Image-Guided Interventions: Technology Review and Clinical Applications, Annu Rev Biomed Eng, Vol. 12, pp. 119-142DOI
2 
R. Marmulla, H. Hoppe, J. Muhling, G. Eggers, 2005, An augmented reality system for image-guided surgery, Int J Oral Max Surg, Vol. 34, No. 6, pp. 594-596DOI
3 
A. Teatini, J. P. de Frutos, B. Eigl, E. Pelanis, D. L. Aghayan, M. Lai, R. P. Kumar, R. Palomar, B. Edwin, O. J. Elle, 2021, Influence of sampling accuracy on augmented reality for laparoscopic image-guided surgery, Minim Invasiv Ther, Vol. 30, No. 4, pp. 229-238DOI
4 
A. D. Nijmeh, N. M. Goodger, D. Hawkes, P. J. Edwards, M. McGurk, 2005, Image-guided navigation in oral and maxillofacial surgery, Brit J Oral Max Surg, Vol. 43, No. 4, pp. 294-302DOI
5 
S. H. Kim, S. J. Lee, M. H. Choi, H. J. Yang, J. E. Kim, K. H. Huh, S. S. Lee, M. S. Heo, S. J. Hwang, W. J. Yi, 2020, Quantitative Augmented Reality-Assisted Free-Hand Orthognathic Surgery Using Electromagnetic Tracking and Skin-Attached Dynamic Reference, J Craniofac Surg, Vol. 31, No. 8, pp. 2175-2181DOI
6 
P. J. Edwards, L. G. Johnson, D. J. Hawkes, M. R. Fenlon, A. J. Strong, M. J. Gleeson, 2004, Clinical experience and perception in stereo augmented reality surgical navigation, Lect Notes Comput Sc, pp. 369-376DOI
7 
J. C. Wang, H. Suenaga, K. Hoshi, L. J. Yang, E. Kobayashi, I. Sakuma, H. G. Liao, 2014, Augmented Reality Navigation With Automatic Marker-Free Image Registration Using 3-D Image Overlay for Dental Surgery, Ieee T Bio-Med Eng, Vol. 61, No. 4, pp. 1295-1304DOI
8 
J. C. Wang, H. Suenaga, H. G. Liao, K. Hoshi, L. J. Yang, E. Kobayashi, I. Sakuma, 2015, Real-time computer- generated integral imaging and 3D image calibration for augmented reality surgical navigation, Comput Med Imag Grap, Vol. 40, pp. 147-159DOI
9 
S. Bernhardt, S. A. Nicolau, L. Soler, C. Doignon, 2017, The status of augmented reality in laparoscopic surgery as of 2016, Med Image Anal, Vol. 37, pp. 66-90DOI
10 
L. F. Ma, Z. Zhao, F. Chen, B. Y. Zhang, L. G. Fu, H. E. Liao, 2017, Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study, Int J Comput Ass Rad, Vol. 12, No. 12, pp. 2205-2215DOI
11 
S. J. Lee, H. J. Yang, M. H. Choi, S. Y. Woo, K. H. Huh, S. S. Lee, M. S. Heo, S. C. Choi, S. J. Hwang, W. J. Yi, 2019, Real-time augmented model guidance for mandi- bular proximal segment repositioning in orthognathic surgery, using electromagnetic tracking, J Cranio Maxill Surg, Vol. 47, No. 1, pp. 127-137DOI
12 
L. F. Ma, W. P. Jiang, B. Y. Zhang, X. F. Qu, G. C. Ning, X. R. Zhang, H. G. Liao, 2019, Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement, Med Biol Eng Comput, Vol. 57, No. 1, pp. 47-57DOI
13 
S. J. Lee, S. Y. Woo, K. H. Huh, S. S. Lee, M. S. Heo, S. C. Choi, J. J. Han, H. J. Yang, S. J. Hwang, W. J. Yi, 2016, Virtual skeletal complex model- and landmark-guided orthognathic surgery system, J Cranio Maxill Surg, Vol. 44, No. 5, pp. 557-568DOI
14 
X. Y. Liu, W. Plishker, G. Zaki, S. Kang, T. D. Kane, R. Shekhar, 2016, On-demand calibration and evaluation for electromagnetically tracked laparoscope in augmented reality visualization, Int J Comput Ass Rad, Vol. 11, No. 6, pp. 1163-1171DOI
15 
H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, T. Takato, 2015, Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study, Bmc Med Imaging, Vol. 15DOI
16 
Y. L. Liu, Z. J. Song, M. N. Wang, 2017, A new robust markerless method for automatic image-to-patient registration in image-guided neurosurgery system, Comput Assist Surg, Vol. 22, pp. 319-325DOI
17 
J. C. Wang, Y. Shen, S. Yang, 2019, A practical marker- less image registration method for augmented reality oral and maxillofacial surgery, Int J Comput Ass Rad, Vol. 14, No. 5, pp. 763-773DOI
18 
M. Hermann, B. Ruf, M. Weinmann, S. Hinz, 2020, Self- Supervised Learning for Monocular Depth Estimation from Aerial Imagery, arXiv preprint arXiv:2008.07246DOI
19 
H. L. Luo, D. L. Yin, S. G. Zhang, D. Q. Xiao, B. C. He, F. Z. Meng, Y. F. Zhang, W. Cai, S. H. He, W. Y. Zhang, Q. M. Hu, H. R. Guo, S. H. Liang, S. Zhou, S. X. Liu, L. M. Sun, X. Guo, C. H. Fang, L. X. Liu, F. C. Jia, 2020, Augmented reality navigation for liver resection with a stereoscopic laparoscope, Comput Meth Prog Bio, Vol. 187DOI
20 
Q. S. Wang, Z. Yu, C. Rasmussen, J. Y. Yu, 2014, Stereo vision-based depth of field rendering on a mobile device, J Electron Imaging, Vol. 23, No. 2DOI
21 
W. Chen, Z. Fu, D. Yang, J. Deng, 2016, Single-image depth perception in the wild, Advances in neural information processing systems, Vol. 29, pp. 730-738Google Search
22 
F. Y. Liu, C. H. Shen, G. S. Lin, I. Reid, 2016, Learning Depth from Single Monocular Images Using Deep Con- volutional Neural Fields, Ieee T Pattern Anal, Vol. 38, No. 10, pp. 2024-2039DOI
23 
C. Godard, O. Mac Aodha, G. J. Brostow, 2017, Unsupervised monocular depth estimation with left-right consistency, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 270-279Google Search
24 
C. Godard, O. Mac Aodha, M. Firman, G. J. Brostow, 2019, Digging into self-supervised monocular depth estimation, Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828-3838Google Search
25 
J. H. Lee, M.-K. Han, D. W. Ko, I. H. Suh, 2019, From big to small: Multi-scale local planar guidance for monocular depth estimation, arXiv preprint arXiv:1907.10326Google Search
26 
K. M. Dawsonhowe, D. Vernon, 1994, Simple Pinhole Camera Calibration, Int J Imag Syst Tech, Vol. 5, No. 1, pp. 1-6DOI
27 
V. Kazemi, J. Sullivan, 2014, One millisecond face alignment with an ensemble of regression trees, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1867-1874Google Search
28 
V. Bevilacqua, A .E. Uva, M. Fiorentino, G. F. Trotta, M. Dimatteo, E. Nasca, A. N. Nocera, G. D. Cascarano, A. Brunetti, N. Caporusso, 2016, A comprehensive method for assessing the blepharospasm cases severity, International conference on recent trends in image processing and pattern recognition, Springer, pp. 369-381DOI
29 
B. Bellekens, V. Spruyt, R. Berkvens, R. Penne, M. Weyn, 2015, A benchmark survey of rigid 3D point cloud registration algorithms, Int. J. Adv. Intell. Syst, Vol. 8, pp. 118-127Google Search
30 
K. He, X. Zhang, S. Ren, J. Sun, 2016, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778Google Search
31 
D. P. Kingma, J. Ba, 2014, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980Google Search
32 
S. Thompson, C. Schneider, M. Bosi, K. Gurusamy, S. Ourselin, B. Davidson, D. Hawkes, M. J. Clarkson, 2018, In vivo estimation of target registration errors during augmented reality laparoscopic surgery, Int J Comput Ass Rad, Vol. 13, No. 6, pp. 865-874DOI
33 
F. Alam, S. Rahman, S. Ullah, K. Gulati, 2018, Medical image registration in image guided surgery: Issues, challenges and research opportunities, Biocybernetics and Biomedical Engineering, Vol. 38, No. 1, pp. 71-89DOI