• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, 2016, You only look once: Unified real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognitionGoogle Search
2 
K. He, G. Gkioxari, P. Dollár, R. Girshick, 2017, Mask r-cnn, Proceedings of the IEEE international conference on computer visionGoogle Search
3 
2019, Automated machine learning with azureml, https://github.com/ Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learningGoogle Search
4 
Data Robot, DataRobot, www.datarobot.comGoogle Search
5 
2019, H2o.ai automl github, https://github.com/h2oai/h2o-3Google Search
6 
A. Arora, A. Candel, J. Lanford, E. LeDell, V. Parmar, 2016, Deep Learning with H2O, http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdfGoogle Search
7 
C. Click, J. Lanford, M. Malohlava, V. Parmar, H. Roark, October 2016, Gradient Boosted Models with H2O, http://docs.h2o.ai/h2o/latest- stable/h2o-docs/booklets/GBMBooklet.pdfGoogle Search
8 
Ron Kohavi, G. H. John, 1997, Wrappers for feature subset selection, Artificial intelligence, Vol. 97, pp. 273-324DOI
9 
J. Rogers, G. Steve, 2005, Identifying feature relevance using a random forest, International Statistical and Optimization Perspectives Workshop, Berlin, HeidelbergDOI
10 
A. Janecek, W. Gansterer, M. Demel, 2008, On the relationship between feature selection and classification accuracy, New challenges for feature selection in data mining and knowledge discovery, PMLRGoogle Search
11 
K. Miyahara, M. Pazzani, 2000, Collaborative filtering with the simple bayesian classifier, Pacific Rim International conference on artificial intelligence, Berlin, HeidelbergDOI
12 
A. Bahl, B. Hellack, M. Balas, A. Dinischiotu, M. Wiemann, J. Brinkmann, A. Haase, 2019, Recursive feature elimination in random forest classification supports nanomaterial grouping, NanoImpact, Vol. 15DOI
13 
James Max Kanter, K. Veeramachaneni, 2015, Deep feature synthesis: Towards automating data science endeavors, 2015 IEEE international conference on data science and advanced analytics (DSAA)DOI
14 
G. Katz, E. Shin, D. Song, 2016, Explorekit: Automatic feature generation and selection, 2016 IEEE 16th International Conference on Data Mining (ICDM)DOI
15 
A. Kaul, S. Maheshwary, V. Pudi, 2017, Autolearn—Automated feature generation and selection, 2017 IEEE International Conference on data mining (ICDM)DOI
16 
Franziska Horn, R. Pack, M. Rieger, 2019, The autofeat Python Library for Automated Feature Engineering and Selection, Joint European Conference on Machine Learning and Knowledge Discovery in DatabasesGoogle Search
17 
M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, F. Hutter, 2019, Auto-sklearn: efficient and robust automated machine learning, Automated Machine Learning, Vol. , No. , pp. 113-134DOI
18 
R. S. Olson, N. Bartley, R. J. Urbanowicz, J. H. Moore, 2016, Evaluation of a tree-based pipeline optimization tool for automating data science, in Proceedings of the Genetic and Evolutionary Computation Conference(GECCO) 2016. New York, NYDOI
19 
Zoph Barret, V. Le. Quoc, 2016, Neural architecture search with reinforcement learning, arXiv preprint arXiv:1611.01578Google Search
20 
H. Pham, M. Guan, B. Zoph, Q. Le, J. Dean, 2018, Efficient neural architecture search via parameters sharing, International Conference on Machine LearningGoogle Search
21 
Elsken Thomas, J. H. Metzen, 2018, Neural architecture search: A survey, arXiv preprint arXiv:1808.05377Google Search
22 
Jin Haifeng, Q. Song, 2019, Auto-keras: An efficient neural architecture search system, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data MiningDOI
23 
Nikhil Ketkar, 2017, Introduction to keras, Deep learning with Python. Apress, Berkeley, CA, pp. 97-111DOI
24 
Sefraoui Omar, M. Aissaoui, 2012, OpenStack: toward an open-source solution for cloud computing, International Journal of Computer Applications, pp. 38-42Google Search
25 
B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, 2016, Borg, omega, and kubernetes, Queue 14.1, pp. 70-93DOI
26 
D. Bernstein, 2014, Containers and cloud: From lxc to docker to kubernetes, IEEE Cloud Computing 1.3, pp. 81-84DOI
27 
B. Burns, J. Beda, K. Hightower, 2019, Kubernetes: up and running: dive into the future of infrastructure, O'Reilly MediaGoogle Search
28 
P. S. Ow, T. E. Morton, 1988, Filtered beam search in scheduling, The International Journal Of Production Research 26.1, pp. 35-62DOI
29 
A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, 2016, Fasttext. zip: Compressing text classification models, arXiv preprint arXiv:1612.03651Google Search
30 
Arora Sanjeev, Y. Liang, T. Ma, 2017, A simple but tough-to-beat baseline for sentence embeddings, International conference on learning representationsGoogle Search
31 
SKTBrain, , SKTBrain/KoBERT, https://github.com/SKTBrain/ KoBERT.Google Search
32 
W. R. Rudnicki, M. Kierczak, J. Koronacki, J. Komorowski, 2006, A statistical method for determining importance of variables in an information system, International Conference on Rough Sets and Current Trends in Computing, Berlin, HeidelbergDOI
33 
M. B. Kursa, A. Jankowski, W. R. Rudnicki, 2010, Boruta–a system for feature selection, Fundamenta Informaticae 101.4, pp. 271-285DOI
34 
M. B. Kursa, W. R. Rudnicki, 2010, Feature selection with the Boruta package, J Stat Softw 36.11, pp. 1-13Google Search
35 
E. L. Park, S. Cho, 2014, KoNLPy: Korean natural language processing in Python, Proceedings of the 26th Annual Conference on Human and Cognitive Language Technology, pp. 133-136Google Search