KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-12
(Vol.70 No.12)
10.5370/KIEE.2021.70.12.1914
Journal XML
XML
PDF
INFO
REF
References
1
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, 2016, You only look once: Unified real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition
2
K. He, G. Gkioxari, P. Dollár, R. Girshick, 2017, Mask r-cnn, Proceedings of the IEEE international conference on computer vision
3
2019, Automated machine learning with azureml, https://github.com/ Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning
4
Data Robot, DataRobot, www.datarobot.com
5
2019, H2o.ai automl github, https://github.com/h2oai/h2o-3
6
A. Arora, A. Candel, J. Lanford, E. LeDell, V. Parmar, 2016, Deep Learning with H2O, http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdf
7
C. Click, J. Lanford, M. Malohlava, V. Parmar, H. Roark, October 2016, Gradient Boosted Models with H2O, http://docs.h2o.ai/h2o/latest- stable/h2o-docs/booklets/GBMBooklet.pdf
8
Ron Kohavi, G. H. John, 1997, Wrappers for feature subset selection, Artificial intelligence, Vol. 97, pp. 273-324
9
J. Rogers, G. Steve, 2005, Identifying feature relevance using a random forest, International Statistical and Optimization Perspectives Workshop, Berlin, Heidelberg
10
A. Janecek, W. Gansterer, M. Demel, 2008, On the relationship between feature selection and classification accuracy, New challenges for feature selection in data mining and knowledge discovery, PMLR
11
K. Miyahara, M. Pazzani, 2000, Collaborative filtering with the simple bayesian classifier, Pacific Rim International conference on artificial intelligence, Berlin, Heidelberg
12
A. Bahl, B. Hellack, M. Balas, A. Dinischiotu, M. Wiemann, J. Brinkmann, A. Haase, 2019, Recursive feature elimination in random forest classification supports nanomaterial grouping, NanoImpact, Vol. 15
13
James Max Kanter, K. Veeramachaneni, 2015, Deep feature synthesis: Towards automating data science endeavors, 2015 IEEE international conference on data science and advanced analytics (DSAA)
14
G. Katz, E. Shin, D. Song, 2016, Explorekit: Automatic feature generation and selection, 2016 IEEE 16th International Conference on Data Mining (ICDM)
15
A. Kaul, S. Maheshwary, V. Pudi, 2017, Autolearn—Automated feature generation and selection, 2017 IEEE International Conference on data mining (ICDM)
16
Franziska Horn, R. Pack, M. Rieger, 2019, The autofeat Python Library for Automated Feature Engineering and Selection, Joint European Conference on Machine Learning and Knowledge Discovery in Databases
17
M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, F. Hutter, 2019, Auto-sklearn: efficient and robust automated machine learning, Automated Machine Learning, Vol. , No. , pp. 113-134
18
R. S. Olson, N. Bartley, R. J. Urbanowicz, J. H. Moore, 2016, Evaluation of a tree-based pipeline optimization tool for automating data science, in Proceedings of the Genetic and Evolutionary Computation Conference(GECCO) 2016. New York, NY
19
Zoph Barret, V. Le. Quoc, 2016, Neural architecture search with reinforcement learning, arXiv preprint arXiv:1611.01578
20
H. Pham, M. Guan, B. Zoph, Q. Le, J. Dean, 2018, Efficient neural architecture search via parameters sharing, International Conference on Machine Learning
21
Elsken Thomas, J. H. Metzen, 2018, Neural architecture search: A survey, arXiv preprint arXiv:1808.05377
22
Jin Haifeng, Q. Song, 2019, Auto-keras: An efficient neural architecture search system, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
23
Nikhil Ketkar, 2017, Introduction to keras, Deep learning with Python. Apress, Berkeley, CA, pp. 97-111
24
Sefraoui Omar, M. Aissaoui, 2012, OpenStack: toward an open-source solution for cloud computing, International Journal of Computer Applications, pp. 38-42
25
B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, 2016, Borg, omega, and kubernetes, Queue 14.1, pp. 70-93
26
D. Bernstein, 2014, Containers and cloud: From lxc to docker to kubernetes, IEEE Cloud Computing 1.3, pp. 81-84
27
B. Burns, J. Beda, K. Hightower, 2019, Kubernetes: up and running: dive into the future of infrastructure, O'Reilly Media
28
P. S. Ow, T. E. Morton, 1988, Filtered beam search in scheduling, The International Journal Of Production Research 26.1, pp. 35-62
29
A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, 2016, Fasttext. zip: Compressing text classification models, arXiv preprint arXiv:1612.03651
30
Arora Sanjeev, Y. Liang, T. Ma, 2017, A simple but tough-to-beat baseline for sentence embeddings, International conference on learning representations
31
SKTBrain, , SKTBrain/KoBERT, https://github.com/SKTBrain/ KoBERT.
32
W. R. Rudnicki, M. Kierczak, J. Koronacki, J. Komorowski, 2006, A statistical method for determining importance of variables in an information system, International Conference on Rough Sets and Current Trends in Computing, Berlin, Heidelberg
33
M. B. Kursa, A. Jankowski, W. R. Rudnicki, 2010, Boruta–a system for feature selection, Fundamenta Informaticae 101.4, pp. 271-285
34
M. B. Kursa, W. R. Rudnicki, 2010, Feature selection with the Boruta package, J Stat Softw 36.11, pp. 1-13
35
E. L. Park, S. Cho, 2014, KoNLPy: Korean natural language processing in Python, Proceedings of the 26th Annual Conference on Human and Cognitive Language Technology, pp. 133-136