• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. Savary, L. Willocquet, S. J. Pethybridge, P. Esker, N. McRoberts, A. Nelson, 2019, The global burden of pathogens and pests on major food crops, Nature ecology & evolution, Vol. 3, No. 3, pp. 430-439Google Search
2 
J. Yoon, S. Kim, K. Kim, B. H. Kim, D. An, 2015, An Analysis of TYLCV Damages under Regional Climate Changes, Journal of Korean Society of Rural Planning, Vol. 21, No. 4, pp. 35-43DOI
3 
Statistics Information Service Korean, Crop Production SurveyGoogle Search
4 
KATI, https://www.kati.netGoogle Search
5 
A. K. Rangarajan, R. Purushothaman, A. Ramesh, 2018, Tomato crop disease classification using pre-trained deep learning algorithm, Procedia computer science, Vol. 133, pp. 1040-1047DOI
6 
Plant-Village Dataset, 2016, https://github.com/spMohantyGoogle Search
7 
A. Krizhevsky, I. Sutskever, G. E. Hinton, 2014, Imagenㅊan, K. and Zisserman, A.,, arXiv preprint arXiv:1409. 1556Google Search
8 
P.S. Mohanty, P.D. Hughes, M. Salathé, 2016, Using deep learning for image-based plant disease detection, Frontiers in plant science, Vol. 7, pp. 1419-1428DOI
9 
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, 2014, Going deeper with convolutions, IEEE conference on Computer Vision and Pattern Recognition(CVPR)Google Search
10 
A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, J. Legg, D. P. Hughes, 2017, Deep learning for image- based cassava disease detection, Frontiers in plant science, Vol. 8, pp. 1852DOI
11 
AI Open Innovation Hub, http://www.aihub.or.krGoogle Search
12 
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevanm, Q. V. Le, 2019, Autoaugment: Learning augmentation policies from data, Conference on Computer Vision and Pattern Recognition(CVPR), pp. 113-123Google Search
13 
A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images, 2009.Google Search
14 
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, 2009, Imagenet: A large-scale hierarchical image database, IEEE conference on computer vision and pattern recognition, pp. 248-255DOI
15 
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, 2011, Reading digits in natural images with unsupervised feature learningGoogle Search
16 
Y. LeCun, L. Bottou, Y. Haffner P. Bengio, 1998, Gradient-based learning applied to document recognition, Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324DOI
17 
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, 2016, Rethinking the inception architecture for computer vision, In  Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR), pp. 2818-2826Google Search
18 
M. Lin, Q. Chen, S. Yan, 2013, Network in network, arXiv:1312.4400Google Search