KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-12
(Vol.70 No.12)
10.5370/KIEE.2021.70.12.2000
Journal XML
XML
PDF
INFO
REF
References
1
S. Savary, L. Willocquet, S. J. Pethybridge, P. Esker, N. McRoberts, A. Nelson, 2019, The global burden of pathogens and pests on major food crops, Nature ecology & evolution, Vol. 3, No. 3, pp. 430-439
2
J. Yoon, S. Kim, K. Kim, B. H. Kim, D. An, 2015, An Analysis of TYLCV Damages under Regional Climate Changes, Journal of Korean Society of Rural Planning, Vol. 21, No. 4, pp. 35-43
3
Statistics Information Service Korean, Crop Production Survey
4
KATI, https://www.kati.net
5
A. K. Rangarajan, R. Purushothaman, A. Ramesh, 2018, Tomato crop disease classification using pre-trained deep learning algorithm, Procedia computer science, Vol. 133, pp. 1040-1047
6
Plant-Village Dataset, 2016, https://github.com/spMohanty
7
A. Krizhevsky, I. Sutskever, G. E. Hinton, 2014, Imagenㅊan, K. and Zisserman, A.,, arXiv preprint arXiv:1409. 1556
8
P.S. Mohanty, P.D. Hughes, M. Salathé, 2016, Using deep learning for image-based plant disease detection, Frontiers in plant science, Vol. 7, pp. 1419-1428
9
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, 2014, Going deeper with convolutions, IEEE conference on Computer Vision and Pattern Recognition(CVPR)
10
A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, J. Legg, D. P. Hughes, 2017, Deep learning for image- based cassava disease detection, Frontiers in plant science, Vol. 8, pp. 1852
11
AI Open Innovation Hub, http://www.aihub.or.kr
12
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevanm, Q. V. Le, 2019, Autoaugment: Learning augmentation policies from data, Conference on Computer Vision and Pattern Recognition(CVPR), pp. 113-123
13
A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images, 2009.
14
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, 2009, Imagenet: A large-scale hierarchical image database, IEEE conference on computer vision and pattern recognition, pp. 248-255
15
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, 2011, Reading digits in natural images with unsupervised feature learning
16
Y. LeCun, L. Bottou, Y. Haffner P. Bengio, 1998, Gradient-based learning applied to document recognition, Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324
17
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, 2016, Rethinking the inception architecture for computer vision, In Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR), pp. 2818-2826
18
M. Lin, Q. Chen, S. Yan, 2013, Network in network, arXiv:1312.4400