• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
K. Ko, 2019, Epidemiology of gastric cancer in Korea, Journal of the Korean Medical Association, 62.8,, pp. 398-406DOI
2 
Korea National Statistical Office, http://kostat.go.kr/Google Search
3 
N. Kim, 2010, Screening and Diagnosis of Early Gastric Cancer, Journal of The Korean Medical AssociationDOI
4 
Y. Kim, S. Cho, 2017, Effectiveness of the Korean National Cancer Screening Program in Reducing Gastric Cancer Mortality, The Korean Journal of Helicobacter and Upper Gastrointestinal Research, 17.2, pp. 110-111DOI
5 
H. Park, S. Nam, S. Lee, S. Kim, K. Shim, S. Park, S. Lee, H. Han, Y. Shin, K. Kim, K. Lee, T. Lee, I. Choi, S. Hong, J. Kim, Y. Lee, S. Kim, Y. Kim, W. Lee, I. Chung, 2015, The Korean guideline for gastric cancer screening, J Korean Med Assoc, 58.5, pp. 373-384DOI
6 
Randolph A Miller, 1994, Medical diagnostic decision support systems—past, present, and future: a threaded bibliography and brief commentary, Journal of the American Medical Informatics Association, 1.1, pp. 8-27DOI
7 
Belle. Ashwin, Mark A. Kon, Kayvan Najaria, 2013, Biomedical informatics for computer-aided decision support systems: a survey, The Scientific World JournalDOI
8 
S. A. Karkanis, D. K. Iakovidis, D. E. Maroulis, D. A. Karras, M. Tzivras, 2003, Computer-aided tumor detection in endoscopic video using color wavelet features, IEEE transactions on information technology in biomedicine, Vol. 7, No. 3, pp. 141-152DOI
9 
Xin Qi, Michael V. Sivak Jr., Gerard Isenberg, Joseph Willis, Andrew M. Rollins, 2006, Computer-aided diagnosis of dysplasia in Barrett's esophagus using endoscopic optical coherence tomography,, 11.4, 044010DOI
10 
Luís A. AlexandreJoão CasteleiroNuno Nobreinst, Springer, Polyp detection in endoscopic video using svms, European Conference on Principles of Data Mining and Knowledge DiscoveryDOI
11 
Y. Kim, S. Lee, D. K, J. Chae, H. Ham, H. Cho, H. Cho, 2020, Machine Learning based Gastric Cancer Computer-aided Diagnosis System using Feature Selection, The Transactions of the Korean Institute of Electrical Engineers, 69.1, pp. 170-176Google Search
12 
Eun Mi Song, Beomhee Park, Chun-Ae Ha1, Sung Wook Hwang, Sang Hyoung Park, Yang Dong-Hoon, Byong DukYe, Seung-Jae Myung, Suk-Kyun Yang, Namkug Kim, Jeong-Sik Byeon, 2020, Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model, Scientific reports, 10.1, pp. 1-10DOI
13 
Luis A. de Souza Jr., Leandro A. Passos, Robert Mendel, Alanna Ebigbo, Andreas Probst, Helmut Messmann, Christoph Palm, Joao P. Papa, 126, Assisting Barrett's esophagus identification using endoscopic data augmentation based on Generative Adversarial Networks, Computers in Biology and MedicineDOI
14 
Y. H. Lee, Q. J. Lee, E. G. Kim, H. S. Kim, T. M. Shin, 2007, Analysis of meridians potential as ground condition for objectification of Acupuncture effect, The Transactions of the Korean Institute of Electrical Engineers, 56.2, pp. 436-441Google Search
15 
Perez Luis, Jason Wang, 2017, The effectiveness of data augmentation in image classification using deep learning, arXiv preprint, arXiv:1712.04621Google Search
16 
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q. V. Le, 2019, Autoaugment: Learning augmentation strategies from data, Proceedings of the IEEE conference on computer vision and pattern recognitionGoogle Search
17 
Kingma Diederik P., Max Welling, 2013, Auto-encoding variational bayes, arXiv preprint, arXiv:1312.6114Google Search
18 
Sanghyun Bae, Byounggu Choi, 2021, Chart-based Stock Price Prediction by Combing Variation Autoencoder and Attention Mechanisms, Information Systems Review, Vol. 23, No. 1, pp. 23-43Google Search
19 
Francois Chollet, 2017, Xception: Deep Learning With Depthwi-se Separable Convolutions, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1251-1258Google Search