• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. Javad, T. Elaheh, R. Pedram, H. Mostafa, 2020, A Comprehensive Review of Applications of Drone Technology in the Mining Industry, drons, Vol. 4, No. 34, pp. 1-25DOI
2 
P. Le Callet, C. Viard-Gaudin, D. Barba, 2006, A Convolutional Neural Network Approach for Objective Video Quality Assessment, IEEE Transactions on Neural Networks, Vol. 17, No. 5, pp. 1316-1327DOI
3 
K. Alex, S. Ilya, E. H. Geoffrey, 2012, ImageNet Classification with Deep Convolutional Neural Networks, Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS), vol. 1, No. pp. 1097-1105, pp. decGoogle Search
4 
S. Christian, L. Wei, J. Yangqing, S. Pierre, R. Scott, A. Dragomir, E. Dumitru, V. Vincent, R. Andrew, 2014, Going deeper with convolutions, arXiv:1409.4842v1, Vol. pp. 1-12Google Search
5 
H. Keiming, Z. Xiangyu, R. Shaoqing, S. Jian, 2015, Deep Residual Learning for Image Recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),, No. pp. 770-778, pp. junGoogle Search
6 
H. Jie, S. Li, S. Gang, 2018, Squeeze-and-Excitation Networks, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),, No. pp. 7132-7141, pp. junGoogle Search
7 
R. Jeseph, D. Santosh, G. Ross, F. Ali, 2016, You Only Look Once: Unified, Real-Time Object Detection, IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Google Search
8 
R. Joseph, F. Ali, 2018, YOLO v3: An Incremental Improvement, arXiv:1804.02767v1Google Search
9 
B. Bilel, K. Taha, K. Anis, A. Adel, O. Kais, 2019, Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3, Proceedings of the 1st International Conference on Unmanned Vehicle Systems (UVS)DOI
10 
X. Wenwei, M. Shari, 2018, Underwater Fish Detection using Deep Learning for Water Power Applications, International Conference on Computational Science and Computational Intelligence (CSCI), Vol. usa, No. pp. 313-318, pp. decDOI
11 
C. Jiwoong, C. Dayoung, K. Hyun, L. Hyuk-Jae, 2019, Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving, International Conference on Computer Vision (ICCV), Vol. korea, pp. 502-511Google Search
12 
L. Feiya, W. Chenglin, B. Zejing, L. Meiqin, 2016, Fault Diagnosis Based on Deep Learning, American Control Conference (ACC), pp. 6851-6856DOI
13 
W. David, T. Yufei, Y. Jun, L. Zhuo, Aug, 2018, Deep Learning-Aided Cyber-Attack Detection in Power Transmission Systems, IEEE Power and Energy Society General Meeting (PESGM), USA, pp. 1-5DOI
14 
P. Avagaddi, J. Belwin Edward, K. Ravi, 2018, A review on fault classification methodologies in power transmission systems: Part-1, Journal of Electrical Systems and Information Technology, Vol. 5, pp. 48-60Google Search