KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2022-02
(Vol.71 No.2)
10.5370/KIEE.2022.71.2.436
Journal XML
XML
PDF
INFO
REF
References
1
S. Javad, T. Elaheh, R. Pedram, H. Mostafa, 2020, A Comprehensive Review of Applications of Drone Technology in the Mining Industry, drons, Vol. 4, No. 34, pp. 1-25
2
P. Le Callet, C. Viard-Gaudin, D. Barba, 2006, A Convolutional Neural Network Approach for Objective Video Quality Assessment, IEEE Transactions on Neural Networks, Vol. 17, No. 5, pp. 1316-1327
3
K. Alex, S. Ilya, E. H. Geoffrey, 2012, ImageNet Classification with Deep Convolutional Neural Networks, Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS), vol. 1, No. pp. 1097-1105, pp. dec
4
S. Christian, L. Wei, J. Yangqing, S. Pierre, R. Scott, A. Dragomir, E. Dumitru, V. Vincent, R. Andrew, 2014, Going deeper with convolutions, arXiv:1409.4842v1, Vol. pp. 1-12
5
H. Keiming, Z. Xiangyu, R. Shaoqing, S. Jian, 2015, Deep Residual Learning for Image Recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),, No. pp. 770-778, pp. jun
6
H. Jie, S. Li, S. Gang, 2018, Squeeze-and-Excitation Networks, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),, No. pp. 7132-7141, pp. jun
7
R. Jeseph, D. Santosh, G. Ross, F. Ali, 2016, You Only Look Once: Unified, Real-Time Object Detection, IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
8
R. Joseph, F. Ali, 2018, YOLO v3: An Incremental Improvement, arXiv:1804.02767v1
9
B. Bilel, K. Taha, K. Anis, A. Adel, O. Kais, 2019, Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3, Proceedings of the 1st International Conference on Unmanned Vehicle Systems (UVS)
10
X. Wenwei, M. Shari, 2018, Underwater Fish Detection using Deep Learning for Water Power Applications, International Conference on Computational Science and Computational Intelligence (CSCI), Vol. usa, No. pp. 313-318, pp. dec
11
C. Jiwoong, C. Dayoung, K. Hyun, L. Hyuk-Jae, 2019, Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving, International Conference on Computer Vision (ICCV), Vol. korea, pp. 502-511
12
L. Feiya, W. Chenglin, B. Zejing, L. Meiqin, 2016, Fault Diagnosis Based on Deep Learning, American Control Conference (ACC), pp. 6851-6856
13
W. David, T. Yufei, Y. Jun, L. Zhuo, Aug, 2018, Deep Learning-Aided Cyber-Attack Detection in Power Transmission Systems, IEEE Power and Energy Society General Meeting (PESGM), USA, pp. 1-5
14
P. Avagaddi, J. Belwin Edward, K. Ravi, 2018, A review on fault classification methodologies in power transmission systems: Part-1, Journal of Electrical Systems and Information Technology, Vol. 5, pp. 48-60