• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.M. Hager, S. Elsig, G. Giatsidis, F. Bassetto, H. Müller, 2014, Electromyography data for non-invasive naturally controlled robotic hand prostheses, Scientific Data, Vol. 1DOI
2 
A. Krasoulis, S. Vijayakumar, K. Nazarpour, Sept 2019, Effect of user practice on prosthetic finger control with an intuitive myoelectric decoder, Frontiers in NeuroscienceDOI
3 
P. Weiner, J. Starke, F. Hundhausen, J. Beil, T. Asfour, October 2018, The KIT Prosthetic Hand: Design and Control, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 1-5DOI
4 
M. Atzori, M. Cognolato, H. Müller, 2016, Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands, Front NeurorobotDOI
5 
D. C. Oh, Y. U. Jo, 2021, Classification of Hand Gestures Based on Multi-channel EMG by Scale Average Wavelet Transform and Convolutional Neural Network, International Journal of Control, Automation and Systems, Vol. 19, No. 3, pp. 1443-1450DOI
6 
https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/bebionic-hand/Google Search
7 
Omer Saad Alkhafaf, Mousa K Wali, Ali H Al-Timemy, 2020, Improved hand prostheses control for transradial amputees based on hybrid of voice recognition and electromyography, SAGE journals vol. 44, Vol. no. 7, No. pp. 509-517, pp. december 7DOI
8 
K. Gundogdu, S. Bayrakdar, I. Yucedag, 2018, Developing and modeling of voice control system for prosthetic robot arm in medical systems., no. 2, pp. 198-205DOI
9 
P. Samant, A. Ravinder, 2015, Real-time speech recognition system for prosthetic arm control, Int. J. Sensing, Computing & Control, Vol. 5, No. 1, pp. 39-46Google Search
10 
M. Jafarzadeh, Y. Tadesse, 2020, End-to-End Learning of Speech 2D Feature-Trajectory for Prosthetic Hands, in 2020 Second International Conference on Transdisciplinary AI (TransAI), pp. 25-33DOI
11 
H. S. Jung, S. H. Yoon, N. S. Park, 2020, Speaker Recognition Using Convolutional Siamese Neural Networks, The Transactions of the korean Institute Electrical Engineers, Vol. 60, No. 1, pp. 164-169Google Search
12 
J. H. Kim, S. P. Lee, 2021, Multi-modal Emotion Recognition using Speech Features and Text Embedding, The Transactions of the korean Institute Electrical Engineers, Vol. 70, No. 1, pp. 108-113DOI
13 
M. S. Kim, J. S. Moon, 2019, Speaker Verification Model Using Short-Time Fourier Transform and Recurrent Neural Network, Korea Institute of Information Security and Cryptology, Vol. 29, No. 6, pp. 1393-1401DOI
14 
D. H. Kim, W. K. Seong, H. K. Kim, 2015, Performance Comparison of Deep Feature Based Speaker Verification Systems, Korea Journal of Speech Science, Vol. 7, No. 4, pp. 9-16DOI
15 
S. Bunrit, T. Inkian, N. Kerdprasop, K. Kerdprasop, April 2019, Text-Independent Speaker Identifi- cation Using Deep Learning Model of Convolution Neural Network, International Journal of Machine Learning and Computing, Vol. 9, No. 2Google Search
16 
Y. Yamanoi, Y. Ogiri, R. Kato, Jan 2020, EMG-based posture classification using a convolutional neural network for a myoelectric hand, Biomedical Signal Processing and Control, Vol. 55DOI
17 
P. Xia, J. Hu, Y. Peng, 2018, EMG-based estimation of limbmovement using deep learning with recurrent convolutionalneural networks, Artificial Organs, Vol. 42, No. 5, pp. e67–e77DOI
18 
S. Albawi, 2017, Understanding of a Convolutional Neural Network, ICET 2017, Vol. antalyaDOI
19 
R. Ranjan, A. Thakur, 2019, Analysis of feature extraction techniques for speech recognition system, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, No. 7c2, pp. 197-200Google Search