• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. Y. Choi, April 2020, A Study on the Automation of Cam Heat Treatment Process using Deep Learning, Journal of The Korean Society of Industry Convergence, Vol. 23, No. 2, pp. 281-288DOI
2 
S. H. Kwon, M. J. An, H. C. Lee, December 2018, Fault Detection and Classification of Process Cycle Signals using Density- based Clustering and Deep Learning, Journal of the Korean Institute of Industrial Engineers, Vol. 44, No. 6, pp. 475-482DOI
3 
R. Wang, K. Nie, T. Wang, Y. Yang, B. Long, 2020, Deep Learning for Anomaly Detection, Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 894-896DOI
4 
P. H. Cho, J. Y. Kim, B. H. Lee, S. D. Jeon, 2015, A Study of 154kV Transmition&Substation Operation Procedure, The 46th KIEE Summer Conference, pp. 443-444DOI
5 
B. Kim, 2018, Design and Implementation of Image-base Fault Diagnosis System for Electric Power Transmission Equipment, Sogang Unversity Thesis PaperDOI
6 
J. M. Jeong, J. S. Kim, T. S. Yoon, J. B. Park, June 2018, Drone-based Power-line Tracking System, The transactions of The Koeran Institute of Electrical Engineers, Vol. 67, No. 6, pp. 773-781DOI
7 
F. Zhang, W. Wang, Y. Zhao, P. Li, Q. Lin, L. Jiang, 2016, Automatic Diagnosis System of Transmission Line Abnormalities and Defects based on UAV, 2016 4th International Conference on Applied Robotics for Power Industry, pp. 1-5DOI
8 
C. K. Lee, W. G. Baek, S. D. Kim, August 2012, Diagnosis and Evaluation of the Real Time Transformer by the Infrared Thermal Image Equipment, Journal of the Korean Society of Manufacturing Technology Engineers, Vol. 21, No. 4, pp. 666-671DOI
9 
J. M. Jung, S. H. Park, Y. S. Lee, J. H. Gim, , The Development of Infrared Thermal Imaging Safety Diagnosis System Using Pearson’s Correlation Coefficient, Journal of the Koerean Solar Energy SocietyDOI
10 
S. T. Oh, H. W. Kim, S. H. Cho, J. H. You, Y. S. Kwon, W. S. Ra, Y. K. Kim, November 2020, Development of a Compressed Deep Neural Network for Detecting Defected Electrical Substation Insulators using a Drone, Journal of Institute of Control, Robotics and Systems, Vol. 26, No. 11, pp. 884-890DOI
11 
I. S. Sim, J. H. Lim, Y. W. Jang, J. H. You, S. T. Oh, Y. K. Kim, 2021, Developing a Compressed Object Detection Model based on YOLOv4 for Deployment on Embedded GPU Platform of Autonomous System, arXiv preprint arxiv:2108.00392DOI
12 
R. Girshick, J. Donahue, T. Darrell, J. Malik, 2014, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580-587DOI
13 
R. Girshick, 2015, Fast R-CNN, Proceedigns of the IEEE International Conference on Computer Vision, pp. 1440-1448DOI
14 
S. Ren, K. He, R. Girshick, J. Sun, 2015, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Advances in Neural Information Processing Systems, Vol. 28, pp. 91-99DOI
15 
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, 2016, You Only Look Once: Unified, Real-Time Object Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779-788DOI
16 
J. Redmon, A. Farhadi, 2017, YOLO9000: Better, Faster, Stronger, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263-7271DOI
17 
J. Redmon, A. Farhadi, 2018, YOLOv3: An Incremental Improvement, arXiv preprint arXiv:1804.02767DOI
18 
A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, 2020, YOLOv4: Optimal Speed and Accuracy of Object Detection, arXiv preprint arXiv:2004.10934DOI
19 
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, A. C. Berg, 2016, SSD: Single Shot MultiBox Detector, European Conference on Computer Vision, pp. 21-37DOI
20 
T. Y. Lin, P. Goyal, R. Girshick, K. He, Dollar P, 2017, Focal Loss for Dense Object Detection, Proceedigns of the IEEE International Conference on Computer Vision, pp. 2980-2988DOI
21 
K. Simonyan, A. Zisserman, 2014, Very Deep Convolutional Networks for Large-Scale Image Recognitoin, arXiv preprint arXiv:1409.1556DOI
22 
K. He, X. Zhang, S. Ren, J. Sun, 2016, Deep Residual Learning for Image Recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778DOI
23 
T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, 2017, Feature Pyramid Networks for Object Detection, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117-2125DOI
24 
K. He, X. Zhang, S. Ren, J. Sun, January 2015, Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 37, No. 9, pp. 1904-1915DOI
25 
S. Lin, L. Qi, H. Qin, J. Shi, J. Jia, 2018, Path Aggregation Network for Instance Segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759-8768DOI
26 
M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, 2016, XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, European Conference on Computer Vision, pp. 525-542DOI
27 
Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, K. T. Cheng, 2018, Bi-Real Net: Enhancing the Performance of 1-bit CNNs with Improved Representational Capability and Advanced Training Algorithm, Proceedings of the European Conference on Computer Vision, pp. 722-737DOI
28 
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer, 2016, SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size, arXiv preprint arXiv:1602.07360DOI
29 
A. Krizhevsky, I. Sutskever, G. E. Hinton, 2012, Imagenet Classification with Deep Convolutional Neural Netowrks, Advances in Neural Information Processing Systems, Vol. 25, pp. 1097-1105DOI
30 
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, H. Adam, 2017, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, arXiv preprint arXiv:1704.04861DOI
31 
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, 2018, MobileNetV2: Inverted Residuals and Linear Bottlenecks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510-4520DOI
32 
X. Zhang, X. Zhou, M. Lin, J. Sun, 2018, ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848-6856DOI
33 
N. Ma, X. Zhang, H. T. Zheng, J. Sun, 2018, ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design, Proceedings of the European Conference on Computer Vision, pp. 116-131DOI
34 
C. Y. Wang, H. Y. M. Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, I. H. Yeh, 2020, CSPNet: A New Backbone That Can Enhance Learning Capability of CNN, Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 390-391DOI