• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Agricultural and livestock distribution news. , Last year, agricultural farm households and population decreased... “Advanced” for aging., [Internet]. Available: https://www.amnews.co.kr/news/articleView.html?idxno=45949.Google Search
2 
tatistics Korea(KOSIS), Plant crop cultivation area, [Internet]. Available: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0017.Google Search
3 
Statistics Korea(KOSIS), Field crop cultivation area, [Internet]. Available: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0012.Google Search
4 
The Farmers Newspaper, Why farmers are hesitant to adopt smart farms, [Internet]. Available: https://www.nongmin.com/opinion/OPP/SWE/TME/332068/viewGoogle Search
5 
Kyunghun J., Sukho S., Hyoungmo J., Seungheon O., Soojin K., Seyun L., Donghyuk J., Syewoon H., Minwon J., Seungjong B., Seunghwan Y., 2020, Measure Improvement on Vulnerable Area based on Climate Change Impact on Agriculture Infrastructure, Journal Of The Korean Society Of Rural Planning, Vol. 26, No. 4, pp. 81-91DOI
6 
Seungmin K., Jeongha H., Jiwan H., Kwansoo K., 2020, A Panel Analysis on the Locality of Paddy Rice Yield’s Response to Temperature Conditions: The Case of South Korean Municipalities, Journal of Climate Change Research, Vol. 11, No. 6, pp. 597-607Google Search
7 
K. Juyeong, 2021, The Effect of Climate Change on the Diversification of Fruit Production in Jeju Island, M.S. dissertation Jeju National University JejuGoogle Search
8 
S. Jaehoon, J. Hakkyun, L Hyunjung., 2019, October, The Effects of Extreme Events on Korean Agricultural Sector. Korea Rural Economic Institute, Available: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09323502., pp. 1-271Google Search
9 
Yangkoo L., Wontae K., Youngjin J., Kwangdeuk K., Keunho R., 2005, Cluster Analysis of Climate Data for Applying Weather Marketin, Korea Spatial Information Society, Vol. 7, No. 3, pp. 33-44Google Search
10 
Yongseok K., Kyomoon S., Myungpyo J., Intae C., Keekyung K., 2016, Classification of Agroclimatic Zones Considering the Topography Characteristicsin South Korea, Journal of Climate Change Research, Vol. 7, No. 4, pp. 507-512Google Search
11 
Korea Meteorological Administration, Open weather data portal, Available: https://data.kma.go.kr/cmmn/main.doGoogle Search
12 
Jinki P., Jonghwa P., 2015, Crops Classification Using Imagery of Unmanned Aerial Vehicle (UAV), Journal of The Korean Society of Agricultural Engineers, Vol. 57, No. 6, pp. 91-97Google Search
13 
Sangmin S., Jaeone L., 2016, Accuracy of Parcel Boundary Demarcation in Agricultural Area Using UAV-Photogrammetry, Journal of the Korean Society of Surveying, Geodesy Photogrammetry and Cartography, Vol. 34, No. 1, pp. 53-62Google Search
14 
Y. Kim, G.H. Kwak, K.D. Lee, S.I. Na, C.W. Park, N.W. Park, 2018, Performance Evaluation of Machine Learning and Deep Learning Algorithms in Crop Classification: Impact of Hyper-parameters and Training Sample Size, Korean Journal of Remote Sensing, Vol. 34, No. 5, pp. 811-827DOI
15 
Seokkeun C., Soungki L., Yeonbin K., Doyeon C., Juweon C., 2020, Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Classification Upland Crop in Small Scale Agricultural Land, Korean Society of Surveying Geodesy Photogrammetry and Cartography, Vol. 38, No. 6, pp. 671-679DOI
16 
Jinki P., Jonghwa P., 2017, Analysis of Rice Field Drought Area Using Unmanned Aerial Vehicle (UAV) and Geographic Information System (GIS) Methods, Journal of The Korean Society of Agricultural Engineers, Vol. 59, No. 3, pp. 21-28DOI
17 
M. D. Bah, A. Hafiane, R. Canals, 2017, Weeds detection in UAV imagery using SLIC and the hough transform, 2017 Seventh International Conference on Image Processing TheoryGoogle Search
18 
ROBOTICS AND 3D VISION GROUP, Crop Row Benchmark Dataset, Available: http://www.etfos.unios.hr/r3dvgroup/index.php?id=crd_datasetGoogle Search