• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng, D. Rus, 2017, Perception, planning, control, and coordination for autonomous vehicles, Machines, Vol. 5, No. 1, pp. 1-54DOI
2 
S. Das, P. N. Suganthan, 2011, Differential evolution: A survey of the state-of-the-art, IEEE Trans. Evol. Comput., Vol. 15, No. 1, pp. 4-31DOI
3 
L. Yu, K. Vongsuriya, L. Wedman, 1970, Application of optimal control theory to a power system, IEEE Trans. Power. Syst., Vol. 89, No. 1, pp. 55-92DOI
4 
E. Trélat, 2012, Optimal control and applications to aerospace: Some results and challenges, J. Optim. Theory Appl., Vol. 154, No. 3, pp. 713-758DOI
5 
E. Alcalá, V. Puig, J. Quevedo, U. Rosolia, 2020, Autonomous racing using Linear Parameter Varying-Model Predictive Control (LPV-MPC), Control Eng. Pract., Vol. 95DOI
6 
R. Sutton, A. Barto, 1998, Reinforcement Learning: an Introduction. Cambridge, MA: MIT PressGoogle Search
7 
B. Wang, M. Jiang, D. Liu, 2020, Real-Time Fault Detection for UAV Based on Model Acceleration Engine, IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 12, pp. 9505-9516DOI
8 
B. Demirel, A. Ramaswamy, D. E. Quevedo, H. Karl, 2018, DeepCAS: A Deep Reinforcement Learning Algorithm for Control-Aware Scheduling, IEEE Control. Syst. Lett., Vol. 2, No. 4, pp. 737-742DOI
9 
Y. Cho, J. Lee, K. Lee, 2020, CNN based Reinforcement Learning for Driving Behavior of Simulated Self-Driving Car, KIEE, Vol. 69, No. 11, pp. 1740-1749Google Search
10 
A. S. Polydoros, L. Nalpantidis, 2017, Survey of model- based reinforcement learning: Applications on robotics, J. Intell. Robot. Syst., Vol. 86, pp. 153-173DOI
11 
M. Deisenroth, C. Rasmussen, 2011, PILCO: a model-based and data efficient approach to policy search, ICMLGoogle Search
12 
M. P. Deisenroth, C.E. Rasmussen, D. Fox, 2011, Learning to Control a Low-Cost Manipulator Using Data-Efficient Reinforcement Learning, Robot. Sci. Syst., Vol. 7, No. , pp. 57-64Google Search
13 
J. Hwangbo, I. Sa, R. Siegwart, M. Hutter, 2017, Control of a quadrotor with reinforcement learning, IEEE Robot. Autom. Lett., Vol. 2, No. 4, pp. 2096-2103DOI
14 
S. Levine, V. Koltun, 2013, Guided policy search, ICMLGoogle Search
15 
T. Zhang, G. Kahn, S. Levine, P. Abbeel, 2016, Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search, in Proc. ICRA, pp. 528-535DOI
16 
J. Yoo, D. Jang, H. J. Kim, K. H. Johansoon, 2020, Hybrid Reinforcement Learning Control for a Micro Quadrotor Flight, IEEE Control Syst. Lett., Vol. 5, No. 2, pp. 505-510DOI
17 
C. K. Williams, C. E. Rasmussen, 2006, Gaussian Processes for Machine Learning. Cambridge, MAGoogle Search
18 
M. P. Deisenroth, 2010, Efficient Reinforcement Learning Using Gaussian Processes, 1st ed. KarlsruheGoogle Search
19 
K. J. Åström, K. Furuta, 2000, Swinging up a pendulum by energy control, Automatica, Vol. 36, No. 2, pp. 287-295DOI